A two-stage feature extraction approach for ECG signals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241895" target="_blank" >RIV/61989100:27240/18:10241895 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-60834-1_30" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-60834-1_30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-60834-1_30" target="_blank" >10.1007/978-3-319-60834-1_30</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A two-stage feature extraction approach for ECG signals
Popis výsledku v původním jazyce
This paper investigate various techniques of extracting features from the electrocardiogram (ECG) signal in order to analyze the ECG signals to detect the heart disease. Feature extraction, is a one of the widespread process of decompose the ECG data. This paper introduce a two-stage feature extraction approach to extract features from ECG signals for different types of arrhythmias. Firstly, Modified Pan-Tomkins Algorithm (MPTA) is implemented to remove noise and extract nine features. Then the proposed Improved Feature Extraction Algorithm (IFEA) is applied to extract additionally ten different features from the ECG signal. The MIT-BIH arrhythmia database have been used to test the proposed approach. It is obvious from the results that the proposed approach shows a high classification in terms of the following four statistical measures: Accuracy (Ac) 98.37%, Recall 48.29%, Precision 43.91%, F Measure 45.31%, and Specificity (Sp) 93.30%, respectively. (C) 2018, Springer International Publishing AG.
Název v anglickém jazyce
A two-stage feature extraction approach for ECG signals
Popis výsledku anglicky
This paper investigate various techniques of extracting features from the electrocardiogram (ECG) signal in order to analyze the ECG signals to detect the heart disease. Feature extraction, is a one of the widespread process of decompose the ECG data. This paper introduce a two-stage feature extraction approach to extract features from ECG signals for different types of arrhythmias. Firstly, Modified Pan-Tomkins Algorithm (MPTA) is implemented to remove noise and extract nine features. Then the proposed Improved Feature Extraction Algorithm (IFEA) is applied to extract additionally ten different features from the ECG signal. The MIT-BIH arrhythmia database have been used to test the proposed approach. It is obvious from the results that the proposed approach shows a high classification in terms of the following four statistical measures: Accuracy (Ac) 98.37%, Recall 48.29%, Precision 43.91%, F Measure 45.31%, and Specificity (Sp) 93.30%, respectively. (C) 2018, Springer International Publishing AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in intelligent systems and computing. Volume 565
ISBN
978-3-319-60833-4
ISSN
2194-5357
e-ISSN
neuvedeno
Počet stran výsledku
12
Strana od-do
299-310
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Marrákeš
Datum konání akce
21. 11. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—