Segmentation of Knee Cartilage: A Comprehensive Review
Identifikátory výsledku
Kód výsledku v IS VaVaI
Výsledek na webu
https://www.ingentaconnect.com/content/asp/jmihi/2018/00000008/00000003/art00001
DOI - Digital Object Identifier
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Segmentation of Knee Cartilage: A Comprehensive Review
Popis výsledku v původním jazyce
The main aim of this study is a complex critical review of the methods applicable for the knee cartilage segmentation. Segmentation of the knee cartilage is intended for a quantitative and qualitative analysis of cartilage morphological structure. This task is important in a field of the clinical practice in the context of an early diagnosis of the pathological changes, such as the osteoarthritis. The cartilage segmentation methods are divided into manual, semiautomatic and automatic approaches, each of this group is associated with a certain level of the user interaction. Generally, the knee cartilage segmentation and extraction can be performed by various approaches including the edge tracking, intensity based methods, supervised learning, energy minimization, statistical methods and multiregional segmentation methods. Using of particular segmentation method is depended on a compromise which user is willing to accept with a respect to the robustness, segmentation purpose, computational time, accuracy and level of user interaction. Some of the presented methods are intended for a detection of cartilage shape, moreover other methods are able to identify the pathological changes badly recognizable from the native image records.
Název v anglickém jazyce
Segmentation of Knee Cartilage: A Comprehensive Review
Popis výsledku anglicky
The main aim of this study is a complex critical review of the methods applicable for the knee cartilage segmentation. Segmentation of the knee cartilage is intended for a quantitative and qualitative analysis of cartilage morphological structure. This task is important in a field of the clinical practice in the context of an early diagnosis of the pathological changes, such as the osteoarthritis. The cartilage segmentation methods are divided into manual, semiautomatic and automatic approaches, each of this group is associated with a certain level of the user interaction. Generally, the knee cartilage segmentation and extraction can be performed by various approaches including the edge tracking, intensity based methods, supervised learning, energy minimization, statistical methods and multiregional segmentation methods. Using of particular segmentation method is depended on a compromise which user is willing to accept with a respect to the robustness, segmentation purpose, computational time, accuracy and level of user interaction. Some of the presented methods are intended for a detection of cartilage shape, moreover other methods are able to identify the pathological changes badly recognizable from the native image records.
Klasifikace
Druh
Jimp - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
GA17-03037S: Hodnocení investic do vývoje zdravotních prostředků
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of medical imaging and health informatics
ISSN
2156-7018
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
401-418
Kód UT WoS článku
000428166200001
EID výsledku v databázi Scopus
—
Základní informace
Druh výsledku
Jimp - Článek v periodiku v databázi Web of Science
OECD FORD
Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Rok uplatnění
2018