Current Automatic Methods for Knee Cartilage Segmentation: A Review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10243838" target="_blank" >RIV/61989100:27240/19:10243838 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8946132/algorithms#algorithms" target="_blank" >https://ieeexplore.ieee.org/document/8946132/algorithms#algorithms</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EUVIP47703.2019.8946132" target="_blank" >10.1109/EUVIP47703.2019.8946132</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Current Automatic Methods for Knee Cartilage Segmentation: A Review
Popis výsledku v původním jazyce
Knee cartilage segmentation has been challenging task for many years. This task is usually connected with two major issues. First object of interest is automatic detection and extraction of knee cartilage shape. Second important issue is detection of osteoarthritis, especially, in early stages. This early deterioration is badly recognizable from native images segmentation significantly contributes to precise localization, detection and extraction of early osteoarthritis. Generally, the knee cartilage automatic segmentation and extraction can be performed by various approaches including edge tracking, intensity-based methods, supervised learning, energy minimization, statistical methods and multiregional segmentation methods. Using of particular segmentation method depends on a compromise which user is willing to accept with respect to robustness, segmentation purpose, computational time, accuracy and level of user interaction. This review is mainly focused on fully automatic segmentation methods bringing the recent informations about modeling of cartilage structure via segmentation approaches. (C) 2019 IEEE.
Název v anglickém jazyce
Current Automatic Methods for Knee Cartilage Segmentation: A Review
Popis výsledku anglicky
Knee cartilage segmentation has been challenging task for many years. This task is usually connected with two major issues. First object of interest is automatic detection and extraction of knee cartilage shape. Second important issue is detection of osteoarthritis, especially, in early stages. This early deterioration is badly recognizable from native images segmentation significantly contributes to precise localization, detection and extraction of early osteoarthritis. Generally, the knee cartilage automatic segmentation and extraction can be performed by various approaches including edge tracking, intensity-based methods, supervised learning, energy minimization, statistical methods and multiregional segmentation methods. Using of particular segmentation method depends on a compromise which user is willing to accept with respect to robustness, segmentation purpose, computational time, accuracy and level of user interaction. This review is mainly focused on fully automatic segmentation methods bringing the recent informations about modeling of cartilage structure via segmentation approaches. (C) 2019 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - European Workshop on Visual Information Processing, EUVIP 2019
ISBN
978-1-72814-496-2
ISSN
2471-8963
e-ISSN
—
Počet stran výsledku
6
Strana od-do
117-122
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Řím
Datum konání akce
28. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—