Modeling of Articular Cartilage with Goal of Early Osteoarthritis Extraction Based on Local Fuzzy Thresholding Driven by Fuzzy C-Means Clustering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10242730" target="_blank" >RIV/61989100:27240/19:10242730 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-14802-7_25" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-14802-7_25</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-14802-7_25" target="_blank" >10.1007/978-3-030-14802-7_25</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling of Articular Cartilage with Goal of Early Osteoarthritis Extraction Based on Local Fuzzy Thresholding Driven by Fuzzy C-Means Clustering
Popis výsledku v původním jazyce
One of the routine tasks in the Orthopedics practice is the articular cartilage assessment. Proper cartilage assessment includes a precise localization, and recognition of spots indicating the cartilage loss caused by the osteoarthritis. Unfortunately, such tasks are performed manually, without the SW feedback, which leads to various clinical outputs based on the physician's experience. Based on such facts, a development of the fully automatic systems bringing automatic modeling and classification of the cartilage is clinically very important. In our paper we have proposed a local thresholding multiregional segmentation method for the cartilage segmentation from the MR (Magnetic Resonance) images. In our approach, an optimal configuration of the fuzzy triangular sets is driven by the FCM clustering to obtain an optimal segmentation model based on the thresholding. We have verified the proposed model on a sample of the 200 MR image records containing the early osteoarthritis signs. (C) 2019, Springer Nature Switzerland AG.
Název v anglickém jazyce
Modeling of Articular Cartilage with Goal of Early Osteoarthritis Extraction Based on Local Fuzzy Thresholding Driven by Fuzzy C-Means Clustering
Popis výsledku anglicky
One of the routine tasks in the Orthopedics practice is the articular cartilage assessment. Proper cartilage assessment includes a precise localization, and recognition of spots indicating the cartilage loss caused by the osteoarthritis. Unfortunately, such tasks are performed manually, without the SW feedback, which leads to various clinical outputs based on the physician's experience. Based on such facts, a development of the fully automatic systems bringing automatic modeling and classification of the cartilage is clinically very important. In our paper we have proposed a local thresholding multiregional segmentation method for the cartilage segmentation from the MR (Magnetic Resonance) images. In our approach, an optimal configuration of the fuzzy triangular sets is driven by the FCM clustering to obtain an optimal segmentation model based on the thresholding. We have verified the proposed model on a sample of the 200 MR image records containing the early osteoarthritis signs. (C) 2019, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 11432
ISBN
978-3-030-14801-0
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
11
Strana od-do
289-299
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Jogdžakarta
Datum konání akce
8. 4. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000493319700024