PATIENT-ADAPTED AND INTER-PATIENT ECG CLASSIFICATION USING NEURAL NETWORK AND GRADIENT BOOSTING
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10244587" target="_blank" >RIV/61989100:27240/18:10244587 - isvavai.cz</a>
Výsledek na webu
<a href="http://nnw.cz/doi/2018/NNW.2018.28.015.pdf" target="_blank" >http://nnw.cz/doi/2018/NNW.2018.28.015.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2018.28.015" target="_blank" >10.14311/NNW.2018.28.015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PATIENT-ADAPTED AND INTER-PATIENT ECG CLASSIFICATION USING NEURAL NETWORK AND GRADIENT BOOSTING
Popis výsledku v původním jazyce
Heart disease diagnosis is an important non-invasive technique. Therefore, there exists an effort to increase the accuracy of arrhythmia classification based on ECG signals. In this work, we present a novel approach of heart arrhythmia detection. The model consists of two parts. The first part extracts important features from raw ECG signal using Auto-Encoder Neural Network. Extracted features obtained by Auto-Encoder represent an input for the second part of the model, the Gradient Boosting and Feedforward Neural Network classifiers. For comparison purposes, we evaluated our approach by using MIT-BIH ECG database and also following recommendations of the Association for the Advancement of Medical Instrumentation (AAMI) for ECG class labeling. We divided our experiment into two scenarios. The first scenario represents the classification task for the patient-adapted paradigm and the second one was dedicated to the inter-patient paradigm. We compared the measured results to the state-of-the-art methods and it shows that our method outperforms the state-of-the art methods in the Ventricular Ectopic (VEB) class for both paradigms and Supraventricular Ectopic (SVEB) class in the inter-patient paradigm.
Název v anglickém jazyce
PATIENT-ADAPTED AND INTER-PATIENT ECG CLASSIFICATION USING NEURAL NETWORK AND GRADIENT BOOSTING
Popis výsledku anglicky
Heart disease diagnosis is an important non-invasive technique. Therefore, there exists an effort to increase the accuracy of arrhythmia classification based on ECG signals. In this work, we present a novel approach of heart arrhythmia detection. The model consists of two parts. The first part extracts important features from raw ECG signal using Auto-Encoder Neural Network. Extracted features obtained by Auto-Encoder represent an input for the second part of the model, the Gradient Boosting and Feedforward Neural Network classifiers. For comparison purposes, we evaluated our approach by using MIT-BIH ECG database and also following recommendations of the Association for the Advancement of Medical Instrumentation (AAMI) for ECG class labeling. We divided our experiment into two scenarios. The first scenario represents the classification task for the patient-adapted paradigm and the second one was dedicated to the inter-patient paradigm. We compared the measured results to the state-of-the-art methods and it shows that our method outperforms the state-of-the art methods in the Ventricular Ectopic (VEB) class for both paradigms and Supraventricular Ectopic (SVEB) class in the inter-patient paradigm.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
14
Strana od-do
241-254
Kód UT WoS článku
000440210500004
EID výsledku v databázi Scopus
—