Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ECG Signal Classification using GAME Neural Network and its comparison to other classifiers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03145833" target="_blank" >RIV/68407700:21230/08:03145833 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ECG Signal Classification using GAME Neural Network and its comparison to other classifiers

  • Popis výsledku v původním jazyce

    Long term Holter monitoring is widely applied to patients with heart diseases. Many of those diseases are not constantly present in the ECG signal but occurs from time to time. To detect these infrequent problems the Holter long time ECG recording is recorded and analysed. There are many methods for automatic detection of irregularities in the ECG signal. In this paper we will comapare the Support Vector Machine (SVM), J48 decision tree (J48), RBF artificial neural network (RBF), Simple logistic function and our novel GAME neural network for detection of the Premature Ventricular Contractions. We will compare and discuss classification performance of mentioned methods. There are also very many features which describes the ECG signal therefore we will try to identify features important for correct classification and examine how the accuracy is affected with only selected features in training set.

  • Název v anglickém jazyce

    ECG Signal Classification using GAME Neural Network and its comparison to other classifiers

  • Popis výsledku anglicky

    Long term Holter monitoring is widely applied to patients with heart diseases. Many of those diseases are not constantly present in the ECG signal but occurs from time to time. To detect these infrequent problems the Holter long time ECG recording is recorded and analysed. There are many methods for automatic detection of irregularities in the ECG signal. In this paper we will comapare the Support Vector Machine (SVM), J48 decision tree (J48), RBF artificial neural network (RBF), Simple logistic function and our novel GAME neural network for detection of the Premature Ventricular Contractions. We will compare and discuss classification performance of mentioned methods. There are also very many features which describes the ECG signal therefore we will try to identify features important for correct classification and examine how the accuracy is affected with only selected features in training set.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/KJB201210701" target="_blank" >KJB201210701: Automatická extrakce znalostí</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Artificial Neural Networks - ICANN 2008, PT I

  • ISBN

    978-3-540-87535-2

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

  • Název nakladatele

    Springer

  • Místo vydání

    Heidelberg

  • Místo konání akce

    Prague

  • Datum konání akce

    3. 9. 2008

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000259566200079