ECG Signal Classification using GAME Neural Network and its comparison to other classifiers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03145833" target="_blank" >RIV/68407700:21230/08:03145833 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ECG Signal Classification using GAME Neural Network and its comparison to other classifiers
Popis výsledku v původním jazyce
Long term Holter monitoring is widely applied to patients with heart diseases. Many of those diseases are not constantly present in the ECG signal but occurs from time to time. To detect these infrequent problems the Holter long time ECG recording is recorded and analysed. There are many methods for automatic detection of irregularities in the ECG signal. In this paper we will comapare the Support Vector Machine (SVM), J48 decision tree (J48), RBF artificial neural network (RBF), Simple logistic function and our novel GAME neural network for detection of the Premature Ventricular Contractions. We will compare and discuss classification performance of mentioned methods. There are also very many features which describes the ECG signal therefore we will try to identify features important for correct classification and examine how the accuracy is affected with only selected features in training set.
Název v anglickém jazyce
ECG Signal Classification using GAME Neural Network and its comparison to other classifiers
Popis výsledku anglicky
Long term Holter monitoring is widely applied to patients with heart diseases. Many of those diseases are not constantly present in the ECG signal but occurs from time to time. To detect these infrequent problems the Holter long time ECG recording is recorded and analysed. There are many methods for automatic detection of irregularities in the ECG signal. In this paper we will comapare the Support Vector Machine (SVM), J48 decision tree (J48), RBF artificial neural network (RBF), Simple logistic function and our novel GAME neural network for detection of the Premature Ventricular Contractions. We will compare and discuss classification performance of mentioned methods. There are also very many features which describes the ECG signal therefore we will try to identify features important for correct classification and examine how the accuracy is affected with only selected features in training set.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/KJB201210701" target="_blank" >KJB201210701: Automatická extrakce znalostí</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Artificial Neural Networks - ICANN 2008, PT I
ISBN
978-3-540-87535-2
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
—
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Prague
Datum konání akce
3. 9. 2008
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000259566200079