Automatic detection of atrial fibrillation and other arrhythmias in holter ECG recordings using rhythm features and neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F17%3A00487041" target="_blank" >RIV/68081731:_____/17:00487041 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.cinc.org/archives/2017/" target="_blank" >http://www.cinc.org/archives/2017/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22489/CinC.2017.364-057" target="_blank" >10.22489/CinC.2017.364-057</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic detection of atrial fibrillation and other arrhythmias in holter ECG recordings using rhythm features and neural networks
Popis výsledku v původním jazyce
Atrial fibrillation (AF) is a disease affecting 1-2 % of the population. Due to its episodic behavior, it is usually detected using Holter recordings. While various AF detection methods have been described in the past, it still remains problematic because holter recordings may contain other arrhythmias (OA) and, moreover, they may be influenced by patient movements. In accordance with the Physionet Challenge 2017, we propose an autonomous and robust method of distinguishing between pathological and normal recordings. First, QRS complexes are identified using envelograms (8-25 Hz and 70-90 Hz). Detected QRS complexes are clustered into morphology groups using a raw ECG signal. If too many morphology groups are produced or less than four QRS complexes are detected, the process is aborted and the recording is considered too noisy. Next, a median shape for the first and the second morphological group of QRS complexes is built. Features are extracted from averaged shapes, from the rhythm of major morphology QRS complexes, from QRS correlation to template shapes and from the convolutional neural network. 277 features are fed into the neural network, resulting in three outputs. The 120 most important features, as well as outputs from the neural network, are fed into a bagged tree ensemble. Machine-learning algorithms and logical rules were trained using 8,138 files from a reduced training set. The resultant F1 score measured using hidden test set (3,658 recordings) was 0.81 (normal 0.91, AF 0.80, OA 0.74)
Název v anglickém jazyce
Automatic detection of atrial fibrillation and other arrhythmias in holter ECG recordings using rhythm features and neural networks
Popis výsledku anglicky
Atrial fibrillation (AF) is a disease affecting 1-2 % of the population. Due to its episodic behavior, it is usually detected using Holter recordings. While various AF detection methods have been described in the past, it still remains problematic because holter recordings may contain other arrhythmias (OA) and, moreover, they may be influenced by patient movements. In accordance with the Physionet Challenge 2017, we propose an autonomous and robust method of distinguishing between pathological and normal recordings. First, QRS complexes are identified using envelograms (8-25 Hz and 70-90 Hz). Detected QRS complexes are clustered into morphology groups using a raw ECG signal. If too many morphology groups are produced or less than four QRS complexes are detected, the process is aborted and the recording is considered too noisy. Next, a median shape for the first and the second morphological group of QRS complexes is built. Features are extracted from averaged shapes, from the rhythm of major morphology QRS complexes, from QRS correlation to template shapes and from the convolutional neural network. 277 features are fed into the neural network, resulting in three outputs. The 120 most important features, as well as outputs from the neural network, are fed into a bagged tree ensemble. Machine-learning algorithms and logical rules were trained using 8,138 files from a reduced training set. The resultant F1 score measured using hidden test set (3,658 recordings) was 0.81 (normal 0.91, AF 0.80, OA 0.74)
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20602 - Medical laboratory technology (including laboratory samples analysis; diagnostic technologies) (Biomaterials to be 2.9 [physical characteristics of living material as related to medical implants, devices, sensors])
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computing in Cardiology 2017
ISBN
—
ISSN
2325-887X
e-ISSN
—
Počet stran výsledku
4
Strana od-do
1-4
Název nakladatele
Computing in Cardiology
Místo vydání
Rennes
Místo konání akce
Rennes
Datum konání akce
24. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000450651100320