Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic detection of atrial fibrillation and other arrhythmias in holter ECG recordings using rhythm features and neural networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F17%3A00487041" target="_blank" >RIV/68081731:_____/17:00487041 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.cinc.org/archives/2017/" target="_blank" >http://www.cinc.org/archives/2017/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.22489/CinC.2017.364-057" target="_blank" >10.22489/CinC.2017.364-057</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic detection of atrial fibrillation and other arrhythmias in holter ECG recordings using rhythm features and neural networks

  • Popis výsledku v původním jazyce

    Atrial fibrillation (AF) is a disease affecting 1-2 % of the population. Due to its episodic behavior, it is usually detected using Holter recordings. While various AF detection methods have been described in the past, it still remains problematic because holter recordings may contain other arrhythmias (OA) and, moreover, they may be influenced by patient movements. In accordance with the Physionet Challenge 2017, we propose an autonomous and robust method of distinguishing between pathological and normal recordings. First, QRS complexes are identified using envelograms (8-25 Hz and 70-90 Hz). Detected QRS complexes are clustered into morphology groups using a raw ECG signal. If too many morphology groups are produced or less than four QRS complexes are detected, the process is aborted and the recording is considered too noisy. Next, a median shape for the first and the second morphological group of QRS complexes is built. Features are extracted from averaged shapes, from the rhythm of major morphology QRS complexes, from QRS correlation to template shapes and from the convolutional neural network. 277 features are fed into the neural network, resulting in three outputs. The 120 most important features, as well as outputs from the neural network, are fed into a bagged tree ensemble. Machine-learning algorithms and logical rules were trained using 8,138 files from a reduced training set. The resultant F1 score measured using hidden test set (3,658 recordings) was 0.81 (normal 0.91, AF 0.80, OA 0.74)

  • Název v anglickém jazyce

    Automatic detection of atrial fibrillation and other arrhythmias in holter ECG recordings using rhythm features and neural networks

  • Popis výsledku anglicky

    Atrial fibrillation (AF) is a disease affecting 1-2 % of the population. Due to its episodic behavior, it is usually detected using Holter recordings. While various AF detection methods have been described in the past, it still remains problematic because holter recordings may contain other arrhythmias (OA) and, moreover, they may be influenced by patient movements. In accordance with the Physionet Challenge 2017, we propose an autonomous and robust method of distinguishing between pathological and normal recordings. First, QRS complexes are identified using envelograms (8-25 Hz and 70-90 Hz). Detected QRS complexes are clustered into morphology groups using a raw ECG signal. If too many morphology groups are produced or less than four QRS complexes are detected, the process is aborted and the recording is considered too noisy. Next, a median shape for the first and the second morphological group of QRS complexes is built. Features are extracted from averaged shapes, from the rhythm of major morphology QRS complexes, from QRS correlation to template shapes and from the convolutional neural network. 277 features are fed into the neural network, resulting in three outputs. The 120 most important features, as well as outputs from the neural network, are fed into a bagged tree ensemble. Machine-learning algorithms and logical rules were trained using 8,138 files from a reduced training set. The resultant F1 score measured using hidden test set (3,658 recordings) was 0.81 (normal 0.91, AF 0.80, OA 0.74)

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20602 - Medical laboratory technology (including laboratory samples analysis; diagnostic technologies) (Biomaterials to be 2.9 [physical characteristics of living material as related to medical implants, devices, sensors])

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Computing in Cardiology 2017

  • ISBN

  • ISSN

    2325-887X

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    1-4

  • Název nakladatele

    Computing in Cardiology

  • Místo vydání

    Rennes

  • Místo konání akce

    Rennes

  • Datum konání akce

    24. 9. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000450651100320