Shape Analysis of Consecutive Beats May Help in the Automated Detection of Atrial Fibrillation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F18%3A00509016" target="_blank" >RIV/68081731:_____/18:00509016 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.22489/CinC.2018.036" target="_blank" >http://dx.doi.org/10.22489/CinC.2018.036</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22489/CinC.2018.036" target="_blank" >10.22489/CinC.2018.036</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Shape Analysis of Consecutive Beats May Help in the Automated Detection of Atrial Fibrillation
Popis výsledku v původním jazyce
Background: Atrial fibrillation (AF) is associated with a higher risk of heart failure or death. AF may be episodic and patients with suspected AF are equipped with Holter ECG devices for several days. However, automated detection of AF in an ECG signal remains problematic, as was shown by the results of the PhysioNet Challenge 2017. Here, we introduce a simple yet robust logistic regression model for AF detection. nMethod: The detrended signal is filtered (1-35 Hz) and normalized. QRS detection based on envelograms (10-35 Hz) reveals QRS complexes. Five features are exfracted from the ECG signal describing RR stability as well as the shape stability of areas preceding QRS complexes. Features were exfracted for 1,517 recordings from the PhysioNet Challenge 2017 public dataset (758 AF recordings and 759 recordings with normal rhythm, other arrhythmia or noisy signal). The recordings were split in a 70/30 % ratio for the purposes of training and testing. nResults: The results showed a sensitivity and specificity of 93 % and 90 %, respectively (AUC 0.96). The presented model was also tested on the MIT-AFDB public database, showing sensitivity and specificity of 89 % and 88 %, respectively. However, tests on an independent private dataset revealed lower specificity when pathologies which are not widely present in the training dataset are common in the tested ECG signal.
Název v anglickém jazyce
Shape Analysis of Consecutive Beats May Help in the Automated Detection of Atrial Fibrillation
Popis výsledku anglicky
Background: Atrial fibrillation (AF) is associated with a higher risk of heart failure or death. AF may be episodic and patients with suspected AF are equipped with Holter ECG devices for several days. However, automated detection of AF in an ECG signal remains problematic, as was shown by the results of the PhysioNet Challenge 2017. Here, we introduce a simple yet robust logistic regression model for AF detection. nMethod: The detrended signal is filtered (1-35 Hz) and normalized. QRS detection based on envelograms (10-35 Hz) reveals QRS complexes. Five features are exfracted from the ECG signal describing RR stability as well as the shape stability of areas preceding QRS complexes. Features were exfracted for 1,517 recordings from the PhysioNet Challenge 2017 public dataset (758 AF recordings and 759 recordings with normal rhythm, other arrhythmia or noisy signal). The recordings were split in a 70/30 % ratio for the purposes of training and testing. nResults: The results showed a sensitivity and specificity of 93 % and 90 %, respectively (AUC 0.96). The presented model was also tested on the MIT-AFDB public database, showing sensitivity and specificity of 89 % and 88 %, respectively. However, tests on an independent private dataset revealed lower specificity when pathologies which are not widely present in the training dataset are common in the tested ECG signal.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1212" target="_blank" >LO1212: ALISI - Centrum pokročilých diagnostických metod a technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computing in Cardiology 2018
ISBN
—
ISSN
2325-887X
e-ISSN
—
Počet stran výsledku
4
Strana od-do
8743764
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Maastricht
Datum konání akce
23. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000482598700075