Discovering periodic itemsets using novel periodicity measures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10242190" target="_blank" >RIV/61989100:27240/19:10242190 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/19:10242190
Výsledek na webu
<a href="http://advances.utc.sk/index.php/AEEE/article/view/3185" target="_blank" >http://advances.utc.sk/index.php/AEEE/article/view/3185</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15598/aeee.v17i1.3185" target="_blank" >10.15598/aeee.v17i1.3185</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Discovering periodic itemsets using novel periodicity measures
Popis výsledku v původním jazyce
Discovering periodic patterns in a customer transaction database is the task of identifying itemsets (sets of items or values) that periodically appear in a sequence of transactions. Numerous methods can identify patterns exhibiting a periodic behavior. Nonetheless, a problem of these traditional approaches is that the concept of periodic behavior is defined very strictly. Indeed, a pattern is considered to be periodic if the amount of time or number of transactions between all pairs of its consecutive occurrences is less than a fixed maxP er (maximum periodicity) threshold. As a result, a pattern can be eliminated by a traditional algorithm for mining periodic patterns even if all of its periods but one respect the maxP er constraint. Consequently, many patterns that are almost always periodic are not presented to the user. But these patterns could be considered as interesting as they generally appear periodically. To address this issue, this paper suggests to use three measures to identify periodic patterns. These measures are named average, maximum and minimum periodicity, respectively. They are each designed to evaluate a different aspect of the periodic behavior of patterns. By using them together in a novel algorithm called Periodic Frequent Pattern Miner, more flexibility is given to users to select patterns meeting specific periodic requirements. The designed algorithm has been evaluated on several datasets. Results show that the proposed solution is scalable, efficient, and can identify a small sets of patterns compared to the Eclat algorithm for mining all frequent patterns in a database. (C) 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING.
Název v anglickém jazyce
Discovering periodic itemsets using novel periodicity measures
Popis výsledku anglicky
Discovering periodic patterns in a customer transaction database is the task of identifying itemsets (sets of items or values) that periodically appear in a sequence of transactions. Numerous methods can identify patterns exhibiting a periodic behavior. Nonetheless, a problem of these traditional approaches is that the concept of periodic behavior is defined very strictly. Indeed, a pattern is considered to be periodic if the amount of time or number of transactions between all pairs of its consecutive occurrences is less than a fixed maxP er (maximum periodicity) threshold. As a result, a pattern can be eliminated by a traditional algorithm for mining periodic patterns even if all of its periods but one respect the maxP er constraint. Consequently, many patterns that are almost always periodic are not presented to the user. But these patterns could be considered as interesting as they generally appear periodically. To address this issue, this paper suggests to use three measures to identify periodic patterns. These measures are named average, maximum and minimum periodicity, respectively. They are each designed to evaluate a different aspect of the periodic behavior of patterns. By using them together in a novel algorithm called Periodic Frequent Pattern Miner, more flexibility is given to users to select patterns meeting specific periodic requirements. The designed algorithm has been evaluated on several datasets. Results show that the proposed solution is scalable, efficient, and can identify a small sets of patterns compared to the Eclat algorithm for mining all frequent patterns in a database. (C) 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015070" target="_blank" >LM2015070: IT4Innovations národní superpočítačové centrum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Electrical and Electronic Engineering
ISSN
1336-1376
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
12
Strana od-do
33-44
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85067039429