Hierarchical Hexagonal Clustering and Indexing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10242618" target="_blank" >RIV/61989100:27240/19:10242618 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-8994/11/6/731/pdf" target="_blank" >https://www.mdpi.com/2073-8994/11/6/731/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym11060731" target="_blank" >10.3390/sym11060731</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hierarchical Hexagonal Clustering and Indexing
Popis výsledku v původním jazyce
Space-filling curves (SFCs) represent an efficient and straightforward method for sparse-space indexing to transform an n-dimensional space into a one-dimensional representation. This is often applied for multidimensional point indexing which brings a better perspective for data analysis, visualization and queries. SFCs are involved in many areas such as big data analysis and visualization, image decomposition, computer graphics and geographic information systems (GISs). The indexing methods subdivide the space into logic clusters of close points and they differ in various parameters including the cluster order, the distance metrics, and the pattern shape. Beside the simple and highly preferred triangular and square uniform grids, the hexagonal uniform grids have gained high interest especially in areas such as GISs, image processing and data visualization for the uniform distance between cells and high effectiveness of circle coverage. While the linearization of hexagons is an obvious approach for memory representation, it seems there is no hexagonal SFC indexing method generally used in practice. The main limitation of hexagons lies in lacking infinite decomposition into sub-hexagons and similarity of tiles on different levels of hierarchy. Our research aims at defining a fast and robust hexagonal SFC method. The Gosper fractal is utilized to preserve the benefits of hexagonal grids and to efficiently and hierarchically linearize points in a hexagonal grid while solving the non-convex shape and recursive transformation issues of the fractal. A comparison to other SFCs and grids is conducted to verify the robustness and effectiveness of our hexagonal method.
Název v anglickém jazyce
Hierarchical Hexagonal Clustering and Indexing
Popis výsledku anglicky
Space-filling curves (SFCs) represent an efficient and straightforward method for sparse-space indexing to transform an n-dimensional space into a one-dimensional representation. This is often applied for multidimensional point indexing which brings a better perspective for data analysis, visualization and queries. SFCs are involved in many areas such as big data analysis and visualization, image decomposition, computer graphics and geographic information systems (GISs). The indexing methods subdivide the space into logic clusters of close points and they differ in various parameters including the cluster order, the distance metrics, and the pattern shape. Beside the simple and highly preferred triangular and square uniform grids, the hexagonal uniform grids have gained high interest especially in areas such as GISs, image processing and data visualization for the uniform distance between cells and high effectiveness of circle coverage. While the linearization of hexagons is an obvious approach for memory representation, it seems there is no hexagonal SFC indexing method generally used in practice. The main limitation of hexagons lies in lacking infinite decomposition into sub-hexagons and similarity of tiles on different levels of hierarchy. Our research aims at defining a fast and robust hexagonal SFC method. The Gosper fractal is utilized to preserve the benefits of hexagonal grids and to efficiently and hierarchically linearize points in a hexagonal grid while solving the non-convex shape and recursive transformation issues of the fractal. A comparison to other SFCs and grids is conducted to verify the robustness and effectiveness of our hexagonal method.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry
ISSN
2073-8994
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
24
Strana od-do
—
Kód UT WoS článku
000475703000006
EID výsledku v databázi Scopus
2-s2.0-85068026695