Refining Concepts by Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10242944" target="_blank" >RIV/61989100:27240/19:10242944 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/47813059:19240/19:A0000487
Výsledek na webu
<a href="https://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/view/3242/2663" target="_blank" >https://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/view/3242/2663</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13053/CyS-23-3-3242" target="_blank" >10.13053/CyS-23-3-3242</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Refining Concepts by Machine Learning
Popis výsledku v původním jazyce
In this paper we deal with machine learning methods and algorithms applied in learning simple concepts by their refining or explication. The method of refining a simple concept of an object O consists in discovering a molecular concept that defines the same or a very similar object to the object O. Typically, such a molecular concept is a professional definition of the object, for instance a biological definition according to taxonomy, or legal definition of roles, acts, etc. Our background theory is Transparent Intensional Logic (TIL). In TIL concepts are explicated as abstract procedures encoded by natural language terms. These procedures are defined as six kinds of TIL constructions. First, we briefly introduce the method of learning with a supervisor that is applied in our case. Then we describe the algorithm 'Framework' together with heuristic methods applied by it. The heuristics is based on a plausible supply of positive and negative (near-miss) examples by which learner's hypotheses are refined and adjusted. Given a positive example, the learner refines the hypothesis learnt so far, while a near-miss example triggers specialization. Our heuristic methods deal with the way refinement is applied, which includes also its special cases generalization and specialization.
Název v anglickém jazyce
Refining Concepts by Machine Learning
Popis výsledku anglicky
In this paper we deal with machine learning methods and algorithms applied in learning simple concepts by their refining or explication. The method of refining a simple concept of an object O consists in discovering a molecular concept that defines the same or a very similar object to the object O. Typically, such a molecular concept is a professional definition of the object, for instance a biological definition according to taxonomy, or legal definition of roles, acts, etc. Our background theory is Transparent Intensional Logic (TIL). In TIL concepts are explicated as abstract procedures encoded by natural language terms. These procedures are defined as six kinds of TIL constructions. First, we briefly introduce the method of learning with a supervisor that is applied in our case. Then we describe the algorithm 'Framework' together with heuristic methods applied by it. The heuristics is based on a plausible supply of positive and negative (near-miss) examples by which learner's hypotheses are refined and adjusted. Given a positive example, the learner refines the hypothesis learnt so far, while a near-miss example triggers specialization. Our heuristic methods deal with the way refinement is applied, which includes also its special cases generalization and specialization.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-23891S" target="_blank" >GA18-23891S: Hyperintensionální usuzování nad texty přirozeného jazyka</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computación y Sistemas
ISSN
1405-5546
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
MX - Spojené státy mexické
Počet stran výsledku
16
Strana od-do
943-958
Kód UT WoS článku
000489136900031
EID výsledku v databázi Scopus
2-s2.0-85076629969