Self-adapting self-organizing migrating algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10243125" target="_blank" >RIV/61989100:27240/19:10243125 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2210650219300756" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2210650219300756</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.swevo.2019.100593" target="_blank" >10.1016/j.swevo.2019.100593</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-adapting self-organizing migrating algorithm
Popis výsledku v původním jazyce
The self-organizing migrating algorithm is a population-based algorithm belonging to swarm intelligence, which has been successfully applied in several areas for solving non-trivial optimization problems. However, based on our experiments, the original formulation of this algorithm suffers with some shortcomings as loss of population diversity, premature convergence, and the necessity of the control parameters hand-tuning. The main contribution of this paper is the development of the novel algorithm mitigating the mentioned issues of the original self-organizing migrating algorithm. We have applied the ideas of the self-adaptation of the control parameters, the different principle of the leader creation, and the external archive of the successful particles. For some special cases, we are able to utilize the differential grouping to detect the interacting variables effectively removing the need for the perturbation parameter. To prove the efficiency of the novel algorithm, we have performed experiments on fifteen unconstrained problems from the CEC 2015 benchmark. The algorithm is compared with seven well-known evolutionary and swarm algorithms. The results of the experiments indicate that the mechanisms used in the novel algorithm had significantly improved the performance of the original self-organizing migrating algorithm, and the new algorithm can now compete with the selected algorithms.
Název v anglickém jazyce
Self-adapting self-organizing migrating algorithm
Popis výsledku anglicky
The self-organizing migrating algorithm is a population-based algorithm belonging to swarm intelligence, which has been successfully applied in several areas for solving non-trivial optimization problems. However, based on our experiments, the original formulation of this algorithm suffers with some shortcomings as loss of population diversity, premature convergence, and the necessity of the control parameters hand-tuning. The main contribution of this paper is the development of the novel algorithm mitigating the mentioned issues of the original self-organizing migrating algorithm. We have applied the ideas of the self-adaptation of the control parameters, the different principle of the leader creation, and the external archive of the successful particles. For some special cases, we are able to utilize the differential grouping to detect the interacting variables effectively removing the need for the perturbation parameter. To prove the efficiency of the novel algorithm, we have performed experiments on fifteen unconstrained problems from the CEC 2015 benchmark. The algorithm is compared with seven well-known evolutionary and swarm algorithms. The results of the experiments indicate that the mechanisms used in the novel algorithm had significantly improved the performance of the original self-organizing migrating algorithm, and the new algorithm can now compete with the selected algorithms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Swarm and Evolutionary Computation
ISSN
2210-6502
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000500379000011
EID výsledku v databázi Scopus
—