Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Self-adapting self-organizing migrating algorithm

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10243125" target="_blank" >RIV/61989100:27240/19:10243125 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2210650219300756" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2210650219300756</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.swevo.2019.100593" target="_blank" >10.1016/j.swevo.2019.100593</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Self-adapting self-organizing migrating algorithm

  • Popis výsledku v původním jazyce

    The self-organizing migrating algorithm is a population-based algorithm belonging to swarm intelligence, which has been successfully applied in several areas for solving non-trivial optimization problems. However, based on our experiments, the original formulation of this algorithm suffers with some shortcomings as loss of population diversity, premature convergence, and the necessity of the control parameters hand-tuning. The main contribution of this paper is the development of the novel algorithm mitigating the mentioned issues of the original self-organizing migrating algorithm. We have applied the ideas of the self-adaptation of the control parameters, the different principle of the leader creation, and the external archive of the successful particles. For some special cases, we are able to utilize the differential grouping to detect the interacting variables effectively removing the need for the perturbation parameter. To prove the efficiency of the novel algorithm, we have performed experiments on fifteen unconstrained problems from the CEC 2015 benchmark. The algorithm is compared with seven well-known evolutionary and swarm algorithms. The results of the experiments indicate that the mechanisms used in the novel algorithm had significantly improved the performance of the original self-organizing migrating algorithm, and the new algorithm can now compete with the selected algorithms.

  • Název v anglickém jazyce

    Self-adapting self-organizing migrating algorithm

  • Popis výsledku anglicky

    The self-organizing migrating algorithm is a population-based algorithm belonging to swarm intelligence, which has been successfully applied in several areas for solving non-trivial optimization problems. However, based on our experiments, the original formulation of this algorithm suffers with some shortcomings as loss of population diversity, premature convergence, and the necessity of the control parameters hand-tuning. The main contribution of this paper is the development of the novel algorithm mitigating the mentioned issues of the original self-organizing migrating algorithm. We have applied the ideas of the self-adaptation of the control parameters, the different principle of the leader creation, and the external archive of the successful particles. For some special cases, we are able to utilize the differential grouping to detect the interacting variables effectively removing the need for the perturbation parameter. To prove the efficiency of the novel algorithm, we have performed experiments on fifteen unconstrained problems from the CEC 2015 benchmark. The algorithm is compared with seven well-known evolutionary and swarm algorithms. The results of the experiments indicate that the mechanisms used in the novel algorithm had significantly improved the performance of the original self-organizing migrating algorithm, and the new algorithm can now compete with the selected algorithms.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Swarm and Evolutionary Computation

  • ISSN

    2210-6502

  • e-ISSN

  • Svazek periodika

    51

  • Číslo periodika v rámci svazku

    Neuveden

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    000500379000011

  • EID výsledku v databázi Scopus