Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Pattern Matching in Sequential Data Using Reservoir Projections

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10253426" target="_blank" >RIV/61989100:27240/19:10253426 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-22796-8_19" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-22796-8_19</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-22796-8_19" target="_blank" >10.1007/978-3-030-22796-8_19</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Pattern Matching in Sequential Data Using Reservoir Projections

  • Popis výsledku v původním jazyce

    A relevant problem on data science is to define an efficient and reliable algorithm for finding specific patterns in a given signal. This type of problems often appears in medical applications, biophysical systems, complex systems, financial analysis, and several other domains. Here, we introduce a new model based in the ability of Recurrent Neural Networks (RNNs) for modelling time series. The technique encodes temporal information of the reference signal and the given query in a feature space. This encoding is done using a RNN. In the feature space, we apply similarity techniques for analysing differences among the projected points. The proposed method presents advantages with respect of state of art, it can produce good results using less computational costs. We discuss the proposal over three benchmark datasets. (C) 2019, Springer Nature Switzerland AG.

  • Název v anglickém jazyce

    Pattern Matching in Sequential Data Using Reservoir Projections

  • Popis výsledku anglicky

    A relevant problem on data science is to define an efficient and reliable algorithm for finding specific patterns in a given signal. This type of problems often appears in medical applications, biophysical systems, complex systems, financial analysis, and several other domains. Here, we introduce a new model based in the ability of Recurrent Neural Networks (RNNs) for modelling time series. The technique encodes temporal information of the reference signal and the given query in a feature space. This encoding is done using a RNN. In the feature space, we apply similarity techniques for analysing differences among the projected points. The proposed method presents advantages with respect of state of art, it can produce good results using less computational costs. We discuss the proposal over three benchmark datasets. (C) 2019, Springer Nature Switzerland AG.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TN01000024" target="_blank" >TN01000024: Národní centrum kompetence - Kybernetika a umělá inteligence</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 11554

  • ISBN

    978-3-030-22795-1

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    11

  • Strana od-do

    173-183

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Moskva

  • Datum konání akce

    10. 7. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000611781800019