Chest X-ray enhancement to interpret pneumonia malformation based on fuzzy soft set and Dempster-Shafer theory of evidence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10243747" target="_blank" >RIV/61989100:27240/20:10243747 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1568494619306702?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494619306702?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2019.105889" target="_blank" >10.1016/j.asoc.2019.105889</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Chest X-ray enhancement to interpret pneumonia malformation based on fuzzy soft set and Dempster-Shafer theory of evidence
Popis výsledku v původním jazyce
Image enhancement algorithms are commonly used to increase the contrast and visual quality of low-dose x-ray images. This paper proposes an automated enhancement method using soft fuzzy sets with a new decision-making scheme based on Dempster-Shafer theory of evidence for the visual interpretation of pneumonia malformation in low-dose x-ray images, called as XEFSDS. The XEFSDS model first generates an original source x-ray image into a complementary image, then each original and complement image is applied to the characterized image object and background areas of fuzzy space. The S-function is utilized to define fuzzy soft sets for the classification of gray level ambiguity in both images, and hence a decision criterion via Dempster-Shafer approach and fuzzy interval has been adapted to discriminate uncertainties on the pixel intensity and the spatial information. Modified membership grade operations have been performed on each object/background area, and Werner's AND/OR operator (an aggregation operator) has been utilized to build a new membership function from two modified membership functions. Finally, an enhanced image is obtained from the new membership function via defuzzification. Experiments on different pneumonia X-ray images demonstrate that the XEFSDS scheme produces better results than the existing methods. To show the advantages of the XEFSDS scheme, we have executed a segmentation based examination on enhanced image for the detection of pneumonia malformation as well as abnormal lobe (lobar pneumonia) or bronchopneumonia. (C) 2019 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Chest X-ray enhancement to interpret pneumonia malformation based on fuzzy soft set and Dempster-Shafer theory of evidence
Popis výsledku anglicky
Image enhancement algorithms are commonly used to increase the contrast and visual quality of low-dose x-ray images. This paper proposes an automated enhancement method using soft fuzzy sets with a new decision-making scheme based on Dempster-Shafer theory of evidence for the visual interpretation of pneumonia malformation in low-dose x-ray images, called as XEFSDS. The XEFSDS model first generates an original source x-ray image into a complementary image, then each original and complement image is applied to the characterized image object and background areas of fuzzy space. The S-function is utilized to define fuzzy soft sets for the classification of gray level ambiguity in both images, and hence a decision criterion via Dempster-Shafer approach and fuzzy interval has been adapted to discriminate uncertainties on the pixel intensity and the spatial information. Modified membership grade operations have been performed on each object/background area, and Werner's AND/OR operator (an aggregation operator) has been utilized to build a new membership function from two modified membership functions. Finally, an enhanced image is obtained from the new membership function via defuzzification. Experiments on different pneumonia X-ray images demonstrate that the XEFSDS scheme produces better results than the existing methods. To show the advantages of the XEFSDS scheme, we have executed a segmentation based examination on enhanced image for the detection of pneumonia malformation as well as abnormal lobe (lobar pneumonia) or bronchopneumonia. (C) 2019 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_027%2F0008463" target="_blank" >EF16_027/0008463: Věda bez hranic</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Soft Computing
ISSN
1568-4946
e-ISSN
—
Svazek periodika
86
Číslo periodika v rámci svazku
Jan
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
000503388200028
EID výsledku v databázi Scopus
2-s2.0-85074514752