Enhancement of dronogram aid to visual interpretation of target objects via intuitionistic fuzzy hesitant sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10242377" target="_blank" >RIV/61989100:27240/19:10242377 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020025519304864?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025519304864?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2019.05.069" target="_blank" >10.1016/j.ins.2019.05.069</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancement of dronogram aid to visual interpretation of target objects via intuitionistic fuzzy hesitant sets
Popis výsledku v původním jazyce
In this paper, we address the hesitant information in enhancement task often caused by differences in image contrast. Enhancement approaches generally use certain filters which generate artifacts or are unable to recover all the objects details in images. Typically, the contrast of an image quantifies a unique ratio between the amounts of black and white through a single pixel. However, contrast is better represented by a group of pixels. We have proposed a novel image enhancement scheme based on intuitionistic hesitant fuzzy sets (IHFSs) for drone images (dronogram) to facilitate better interpretations of target objects. First, a given dronogram is divided into foreground and background areas based on an estimated threshold from which the proposed model measures the amount of black/white intensity levels. Next, we fuzzify both of them and determine the hesitant score indicated by the distance between the two areas for each point in the fuzzy plane. Finally, a hyperbolic operator is adopted for each membership grade to improve the photographic quality leading to enhanced results via defuzzification. The proposed method is tested on a large drone image database. Results demonstrate better contrast enhancement, improved visual quality, and better recognition compared to the state-of-the-art methods. (C) 2019 The Authors. Published by Elsevier Inc.
Název v anglickém jazyce
Enhancement of dronogram aid to visual interpretation of target objects via intuitionistic fuzzy hesitant sets
Popis výsledku anglicky
In this paper, we address the hesitant information in enhancement task often caused by differences in image contrast. Enhancement approaches generally use certain filters which generate artifacts or are unable to recover all the objects details in images. Typically, the contrast of an image quantifies a unique ratio between the amounts of black and white through a single pixel. However, contrast is better represented by a group of pixels. We have proposed a novel image enhancement scheme based on intuitionistic hesitant fuzzy sets (IHFSs) for drone images (dronogram) to facilitate better interpretations of target objects. First, a given dronogram is divided into foreground and background areas based on an estimated threshold from which the proposed model measures the amount of black/white intensity levels. Next, we fuzzify both of them and determine the hesitant score indicated by the distance between the two areas for each point in the fuzzy plane. Finally, a hyperbolic operator is adopted for each membership grade to improve the photographic quality leading to enhanced results via defuzzification. The proposed method is tested on a large drone image database. Results demonstrate better contrast enhancement, improved visual quality, and better recognition compared to the state-of-the-art methods. (C) 2019 The Authors. Published by Elsevier Inc.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_027%2F0008463" target="_blank" >EF16_027/0008463: Věda bez hranic</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information sciences
ISSN
0020-0255
e-ISSN
—
Svazek periodika
500
Číslo periodika v rámci svazku
October 2019
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
67-86
Kód UT WoS článku
000478711700005
EID výsledku v databázi Scopus
2-s2.0-85066277144