Colonoscopy contrast-enhanced by intuitionistic fuzzy soft sets for polyp cancer localization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10245956" target="_blank" >RIV/61989100:27240/20:10245956 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1568494620304312?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494620304312?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2020.106492" target="_blank" >10.1016/j.asoc.2020.106492</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Colonoscopy contrast-enhanced by intuitionistic fuzzy soft sets for polyp cancer localization
Popis výsledku v původním jazyce
Medical images often suffer from low contrast, irregular gray-level spacing and contain a lot of uncertainties due to constraints of imaging devices and environment (various lighting conditions) when capturing images. In order to achieve any clinical-diagnosis method for medical imaging with better comprehensibility, image contrast enhancement algorithms would be appropriate to improve the visual quality of medical images. In this paper, an automated image enhancement method is presented for colonoscopy images based on the intuitionistic fuzzy soft set. The fuzzy soft set is used to model the intuitionistic fuzzy soft image matrix based on a set of soft features of the colonoscopy images. The technique decomposes the fuzzy image into multiple blocks and estimates a soft-score based on an adaptive soft parametric hesitancy map by using the hesitant entropy for each block to quantify the uncertainties. In the processing stage, an adaptive intensity modification process is done for each block according to its soft-score. These scores are accurately addressed the gray-level ambiguities in colonoscopy images that lead to better results. Finally, the enhanced image achieved by performing a defuzzification together with all unprocessed blocks. Qualitative and quantitative assessments demonstrate that the proposed method improves image contrast and region-of-interest of polyps in colonogram. Experimental results on enhancing a large CVC-Clinic-DB and ASU-Mayo clinic colonoscopy benchmark datasets show that the proposed method outperforms the state-of-the-art medical image enhancement methods. (C) 2020 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Colonoscopy contrast-enhanced by intuitionistic fuzzy soft sets for polyp cancer localization
Popis výsledku anglicky
Medical images often suffer from low contrast, irregular gray-level spacing and contain a lot of uncertainties due to constraints of imaging devices and environment (various lighting conditions) when capturing images. In order to achieve any clinical-diagnosis method for medical imaging with better comprehensibility, image contrast enhancement algorithms would be appropriate to improve the visual quality of medical images. In this paper, an automated image enhancement method is presented for colonoscopy images based on the intuitionistic fuzzy soft set. The fuzzy soft set is used to model the intuitionistic fuzzy soft image matrix based on a set of soft features of the colonoscopy images. The technique decomposes the fuzzy image into multiple blocks and estimates a soft-score based on an adaptive soft parametric hesitancy map by using the hesitant entropy for each block to quantify the uncertainties. In the processing stage, an adaptive intensity modification process is done for each block according to its soft-score. These scores are accurately addressed the gray-level ambiguities in colonoscopy images that lead to better results. Finally, the enhanced image achieved by performing a defuzzification together with all unprocessed blocks. Qualitative and quantitative assessments demonstrate that the proposed method improves image contrast and region-of-interest of polyps in colonogram. Experimental results on enhancing a large CVC-Clinic-DB and ASU-Mayo clinic colonoscopy benchmark datasets show that the proposed method outperforms the state-of-the-art medical image enhancement methods. (C) 2020 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_027%2F0008463" target="_blank" >EF16_027/0008463: Věda bez hranic</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Soft Computing
ISSN
1568-4946
e-ISSN
—
Svazek periodika
95
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
—
Kód UT WoS článku
000576775900016
EID výsledku v databázi Scopus
2-s2.0-85086996601