Lightweight Spectral-Spatial Squeeze-and-Excitation Residual Bag-of-Features Learning for Hyperspectral Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246262" target="_blank" >RIV/61989100:27240/20:10246262 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8976424" target="_blank" >https://ieeexplore.ieee.org/document/8976424</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TGRS.2019.2961681" target="_blank" >10.1109/TGRS.2019.2961681</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lightweight Spectral-Spatial Squeeze-and-Excitation Residual Bag-of-Features Learning for Hyperspectral Classification
Popis výsledku v původním jazyce
Of late, convolutional neural networks (CNNs) find great attention in hyperspectral image (HSI) classification since deep CNNs exhibit commendable performance for computer vision-related areas. CNNs have already proved to be very effective feature extractors, especially for the classification of large data sets composed of 2-D images. However, due to the existence of noisy or correlated spectral bands in the spectral domain and nonuniform pixels in the spatial neighborhood, HSI classification results are often degraded and unacceptable. However, the elementary CNN models often find intrinsic representation of pattern directly when employed to explore the HSI in the spectral-spatial domain. In this article, we design an end-to-end spectral-spatial squeeze-and-excitation (SE) residual bag-of-feature (S3EResBoF) learning framework for HSI classification that takes as input raw 3-D image cubes without engineering and builds a codebook representation of transform feature by motivating the feature maps facilitating classification by suppressing useless feature maps based on patterns present in the feature maps. To boost the classification performance and learn the joint spatial-spectral features, every residual block is connected to every other 3-D convolutional layer through an identity mapping followed by an SE block, thereby facilitating the rich gradients through backpropagation. Additionally, we introduce batch normalization on every convolutional layer (ConvBN) to regularize the convergence of the network and scale invariant BoF quantization for the measure of classification.
Název v anglickém jazyce
Lightweight Spectral-Spatial Squeeze-and-Excitation Residual Bag-of-Features Learning for Hyperspectral Classification
Popis výsledku anglicky
Of late, convolutional neural networks (CNNs) find great attention in hyperspectral image (HSI) classification since deep CNNs exhibit commendable performance for computer vision-related areas. CNNs have already proved to be very effective feature extractors, especially for the classification of large data sets composed of 2-D images. However, due to the existence of noisy or correlated spectral bands in the spectral domain and nonuniform pixels in the spatial neighborhood, HSI classification results are often degraded and unacceptable. However, the elementary CNN models often find intrinsic representation of pattern directly when employed to explore the HSI in the spectral-spatial domain. In this article, we design an end-to-end spectral-spatial squeeze-and-excitation (SE) residual bag-of-feature (S3EResBoF) learning framework for HSI classification that takes as input raw 3-D image cubes without engineering and builds a codebook representation of transform feature by motivating the feature maps facilitating classification by suppressing useless feature maps based on patterns present in the feature maps. To boost the classification performance and learn the joint spatial-spectral features, every residual block is connected to every other 3-D convolutional layer through an identity mapping followed by an SE block, thereby facilitating the rich gradients through backpropagation. Additionally, we introduce batch normalization on every convolutional layer (ConvBN) to regularize the convergence of the network and scale invariant BoF quantization for the measure of classification.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: Platforma pro výzkum orientovaný na Průmysl 4.0 a robotiku v ostravské aglomeraci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Geoscience and Remote Sensing
ISSN
0196-2892
e-ISSN
—
Svazek periodika
58
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
5277-5290
Kód UT WoS článku
000552371900004
EID výsledku v databázi Scopus
2-s2.0-85086138500