Discovering basic kernels in the first layer of a CNN
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F18%3AA1901U95" target="_blank" >RIV/61988987:17610/18:A1901U95 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Discovering basic kernels in the first layer of a CNN
Popis výsledku v původním jazyce
In our research, we are focused on a semantic description of feature maps and corresponding to them kernels that are used in Convolutional neural networks (CNN). A CNN is a hierarchically ordered computational tool that uses a training process to learn and extract abstract characteristics (features) of input objects. The extracted features have to approximate the original object sufficiently for a next stage (classification, regression, etc.). The first layer of a CNN extracts features by performing convolution operations with a number of kernels. Therefore, to study the semantic description of feature maps in the first layer, we should be focused on convolutional kernels (otherwise, weight vectors). We make a conjecture that in the first layer, a CNN learns the most typical image processing convolutional kernels, and they appear in subsequent layers as well. To confirm our claim, we have used 5 CNNs~cite{vgg,inception,resnet,mobilenet,alexnet} trained on the textit{ImageNet} dataset. In the first layer of selected CNNs, we have identified (after performing clustering) the following kernels: gradient kernels with various rotations, Gaussian kernels and texture extracting kernels (e.g., Gabor filters). Further, we have found kernels sensitive to certain color(s) (combinations) that might be dominant in the ImageNet.To conclude, our hypothesis seems to be correct, and a CNN indeed learns standard image processing convolution kernels. A relationship between kernels in further layers is a subject of the future research.
Název v anglickém jazyce
Discovering basic kernels in the first layer of a CNN
Popis výsledku anglicky
In our research, we are focused on a semantic description of feature maps and corresponding to them kernels that are used in Convolutional neural networks (CNN). A CNN is a hierarchically ordered computational tool that uses a training process to learn and extract abstract characteristics (features) of input objects. The extracted features have to approximate the original object sufficiently for a next stage (classification, regression, etc.). The first layer of a CNN extracts features by performing convolution operations with a number of kernels. Therefore, to study the semantic description of feature maps in the first layer, we should be focused on convolutional kernels (otherwise, weight vectors). We make a conjecture that in the first layer, a CNN learns the most typical image processing convolutional kernels, and they appear in subsequent layers as well. To confirm our claim, we have used 5 CNNs~cite{vgg,inception,resnet,mobilenet,alexnet} trained on the textit{ImageNet} dataset. In the first layer of selected CNNs, we have identified (after performing clustering) the following kernels: gradient kernels with various rotations, Gaussian kernels and texture extracting kernels (e.g., Gabor filters). Further, we have found kernels sensitive to certain color(s) (combinations) that might be dominant in the ImageNet.To conclude, our hypothesis seems to be correct, and a CNN indeed learns standard image processing convolution kernels. A relationship between kernels in further layers is a subject of the future research.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 19th International Student Conference on Applied Mathematics and Informatics
ISBN
9788074641121
ISSN
—
e-ISSN
—
Počet stran výsledku
1
Strana od-do
51-51
Název nakladatele
University of Ostrava
Místo vydání
Ostrava
Místo konání akce
Malenovice
Datum konání akce
10. 5. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—