F-Mapper: A Fuzzy Mapper clustering algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246978" target="_blank" >RIV/61989100:27240/20:10246978 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0950705119304794?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0950705119304794?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.knosys.2019.105107" target="_blank" >10.1016/j.knosys.2019.105107</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
F-Mapper: A Fuzzy Mapper clustering algorithm
Popis výsledku v původním jazyce
Using topology in data analysis, known as Topological Data Analysis (TDA), is now a promising new area of data mining research. One of the important and foundational tools of TDA is the Mapper algorithm. During the past two decades, this algorithm has proven its useful and robust abilities in extracting insights and meaningful information from high-dimensional datasets. Nevertheless, several alterations in the choices of parameters, such as lens, cover and clustering, can be used to develop this algorithm. In this paper, we propose the F-Mapper algorithm, based on the foundation of the Mapper algorithm, to solve the problem of automating when dividing cover intervals with an arbitrary percentage of overlap. To clarify the efficiency of this enhanced algorithm, experiments were carried out on three datasets, including the Unit Circle, Reaven and Miller Diabetes, and NKI Breast Cancer. The experimental results will be analyzed and compared with those of the original method, the Mapper algorithm, through the output image and silhouette coefficient score in the evaluation of clustering. (C) 2019 Elsevier B.V.
Název v anglickém jazyce
F-Mapper: A Fuzzy Mapper clustering algorithm
Popis výsledku anglicky
Using topology in data analysis, known as Topological Data Analysis (TDA), is now a promising new area of data mining research. One of the important and foundational tools of TDA is the Mapper algorithm. During the past two decades, this algorithm has proven its useful and robust abilities in extracting insights and meaningful information from high-dimensional datasets. Nevertheless, several alterations in the choices of parameters, such as lens, cover and clustering, can be used to develop this algorithm. In this paper, we propose the F-Mapper algorithm, based on the foundation of the Mapper algorithm, to solve the problem of automating when dividing cover intervals with an arbitrary percentage of overlap. To clarify the efficiency of this enhanced algorithm, experiments were carried out on three datasets, including the Unit Circle, Reaven and Miller Diabetes, and NKI Breast Cancer. The experimental results will be analyzed and compared with those of the original method, the Mapper algorithm, through the output image and silhouette coefficient score in the evaluation of clustering. (C) 2019 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Knowledge-Based Systems
ISSN
0950-7051
e-ISSN
—
Svazek periodika
189
Číslo periodika v rámci svazku
FEb
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000510955100012
EID výsledku v databázi Scopus
2-s2.0-85073818583