SFCM: A Fuzzy Clustering Algorithm of Extracting the Shape Information of Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10246971" target="_blank" >RIV/61989100:27240/21:10246971 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9160881" target="_blank" >https://ieeexplore.ieee.org/document/9160881</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TFUZZ.2020.3014662" target="_blank" >10.1109/TFUZZ.2020.3014662</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SFCM: A Fuzzy Clustering Algorithm of Extracting the Shape Information of Data
Popis výsledku v původním jazyce
Topological data analysis is a new theoretical trend using topological techniques to mine data. This approach helps determine topological data structures. It focuses on investigating the global shape of data rather than on local information of high-dimensional data. The Mapper algorithm is considered as a sound representative approach in this area. It is used to cluster and identify concise and meaningful global topological data structures that are out of reach for many other clustering methods. In this article, we propose a new method called the Shape Fuzzy C-Means (SFCM) algorithm, which is constructed based on the Fuzzy C-Means algorithm with particular features of the Mapper algorithm. The SFCM algorithm can not only exhibit the same clustering ability as the Fuzzy C-Means but also reveal some relationships through visualizing the global shape of data supplied by the Mapper. We present a formal proof and include experiments to confirm our claims. The performance of the enhanced algorithm is demonstrated through a comparative analysis involving the original algorithm, Mapper, and the other fuzzy set based improved algorithm, F-Mapper, for synthetic and real-world data. The comparison is conducted with respect to output visualization in the topological sense and clustering stability. (C) 1993-2012 IEEE.
Název v anglickém jazyce
SFCM: A Fuzzy Clustering Algorithm of Extracting the Shape Information of Data
Popis výsledku anglicky
Topological data analysis is a new theoretical trend using topological techniques to mine data. This approach helps determine topological data structures. It focuses on investigating the global shape of data rather than on local information of high-dimensional data. The Mapper algorithm is considered as a sound representative approach in this area. It is used to cluster and identify concise and meaningful global topological data structures that are out of reach for many other clustering methods. In this article, we propose a new method called the Shape Fuzzy C-Means (SFCM) algorithm, which is constructed based on the Fuzzy C-Means algorithm with particular features of the Mapper algorithm. The SFCM algorithm can not only exhibit the same clustering ability as the Fuzzy C-Means but also reveal some relationships through visualizing the global shape of data supplied by the Mapper. We present a formal proof and include experiments to confirm our claims. The performance of the enhanced algorithm is demonstrated through a comparative analysis involving the original algorithm, Mapper, and the other fuzzy set based improved algorithm, F-Mapper, for synthetic and real-world data. The comparison is conducted with respect to output visualization in the topological sense and clustering stability. (C) 1993-2012 IEEE.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Fuzzy Systems
ISSN
1063-6706
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
75-89
Kód UT WoS článku
000605370700007
EID výsledku v databázi Scopus
2-s2.0-85098858446