A modified covariance matrix adaptation evolution strategy for real-world constrained optimization problems
Popis výsledku
Identifikátory výsledku
Kód výsledku v IS VaVaI
Nalezeny alternativní kódy
RIV/61989100:27740/20:10247257
Výsledek na webu
DOI - Digital Object Identifier
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A modified covariance matrix adaptation evolution strategy for real-world constrained optimization problems
Popis výsledku v původním jazyce
Most of the real-world black-box optimization problems are associated with multiple non-linear as well as non-convex constraints, making them difficult to solve. In this work, we introduce a variant of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) with linear timing complexity to adopt the constraints of Constrained Optimization Problems (COPs). CMA-ES is already well-known as a powerful algorithm for solving continuous, non-convex, and black-box optimization problems by fitting a second-order model to the underlying objective function (similar in spirit, to the Hessian approximation used by Quasi-Newton methods in mathematical programming). The proposed algorithm utilizes an e-constraint-based ranking and a repair method to handle the violation of the constraints. The experimental results on a group of real-world optimization problems show that the performance of the proposed algorithm is better than several other state-of-the-art algorithms in terms of constraint handling and robustness. (C) 2020 Owner/Author.
Název v anglickém jazyce
A modified covariance matrix adaptation evolution strategy for real-world constrained optimization problems
Popis výsledku anglicky
Most of the real-world black-box optimization problems are associated with multiple non-linear as well as non-convex constraints, making them difficult to solve. In this work, we introduce a variant of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) with linear timing complexity to adopt the constraints of Constrained Optimization Problems (COPs). CMA-ES is already well-known as a powerful algorithm for solving continuous, non-convex, and black-box optimization problems by fitting a second-order model to the underlying objective function (similar in spirit, to the Hessian approximation used by Quasi-Newton methods in mathematical programming). The proposed algorithm utilizes an e-constraint-based ranking and a repair method to handle the violation of the constraints. The experimental results on a group of real-world optimization problems show that the performance of the proposed algorithm is better than several other state-of-the-art algorithms in terms of constraint handling and robustness. (C) 2020 Owner/Author.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
GECCO 2020 - Proceedings of the 2020 Genetic and Evolutionary Computation Conference
ISBN
978-1-4503-7128-5
ISSN
—
e-ISSN
—
Počet stran výsledku
2
Strana od-do
11-12
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Cancún
Datum konání akce
8. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—
Druh výsledku
D - Stať ve sborníku
OECD FORD
Computer and information sciences
Rok uplatnění
2020