Adaptive Doubly Trained Evolution Control for the Covariance Matrix Adaptation Evolution Strategy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00317541" target="_blank" >RIV/68407700:21340/17:00317541 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00023752:_____/17:43919251
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive Doubly Trained Evolution Control for the Covariance Matrix Adaptation Evolution Strategy
Popis výsledku v původním jazyce
An area of increasingly frequent applications of evolutionary optimization to real-world problems is continuous black-box optimization. However, evaluating real-world black-box fitness functions is sometimes very time-consuming or expensive, which interferes with the need of evolutionary algorithms for many fitness evaluations. Therefore, surrogate regression models replacing the original expensive fitness in some of the evaluated points have been in use since the early 2000s. The Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy (DTS-CMA-ES) represents a surrogate-assisted version of the state-of-the-art algorithm for continuous black- box optimization CMA-ES. The DTS-CMA-ES saves expensive function evaluations through using a surrogate model. However, the model inaccuracy on some functions can slow-down the algorithm convergence. This paper investigates an extension of DTS-CMA-ES which controls the usage of the model according to the model’s error. Results of testing an adaptive and the original version of DTS-CMA-ES on the set of noiseless benchmarks are reported.
Název v anglickém jazyce
Adaptive Doubly Trained Evolution Control for the Covariance Matrix Adaptation Evolution Strategy
Popis výsledku anglicky
An area of increasingly frequent applications of evolutionary optimization to real-world problems is continuous black-box optimization. However, evaluating real-world black-box fitness functions is sometimes very time-consuming or expensive, which interferes with the need of evolutionary algorithms for many fitness evaluations. Therefore, surrogate regression models replacing the original expensive fitness in some of the evaluated points have been in use since the early 2000s. The Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy (DTS-CMA-ES) represents a surrogate-assisted version of the state-of-the-art algorithm for continuous black- box optimization CMA-ES. The DTS-CMA-ES saves expensive function evaluations through using a surrogate model. However, the model inaccuracy on some functions can slow-down the algorithm convergence. This paper investigates an extension of DTS-CMA-ES which controls the usage of the model according to the model’s error. Results of testing an adaptive and the original version of DTS-CMA-ES on the set of noiseless benchmarks are reported.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1611" target="_blank" >LO1611: Udržitelnost pro Národní ústav duševního zdraví</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ITAT 2017: Information Technologies – Applications and Theory
ISBN
—
ISSN
1613-0073
e-ISSN
1613-0073
Počet stran výsledku
9
Strana od-do
120-128
Název nakladatele
CEUR Workshop Proceedings
Místo vydání
Aachen
Místo konání akce
Martinské hole, Malá Fatra
Datum konání akce
22. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—