Boosted Regression Forest for the Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00494112" target="_blank" >RIV/67985807:_____/18:00494112 - isvavai.cz</a>
Výsledek na webu
<a href="http://ceur-ws.org/Vol-2203/72.pdf" target="_blank" >http://ceur-ws.org/Vol-2203/72.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Boosted Regression Forest for the Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy
Popis výsledku v původním jazyce
Many real-world problems belong to the area of continuous black-box optimization, where evolutionary optimizers have become very popular in spite of the fact that such optimizers require a great amount of real-world fitness function evaluations, which can be very expensive or time-consuming. Hence, regression surrogate models are often utilized to evaluate some points instead of the fitness function. The Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy (DTS-CMA-ES) is a surrogate-assisted version of the state-of-the-art continuous black-box optimizer CMA-ES using Gausssian processes as a surrogate model to predict the whole distribution of the fitness function. In this paper, the DTS-CMAES is studied in connection with the boosted regression forest, another regression model capable to estimate the distribution. Results of testing regression forest and Gaussian processes, the former in 20 different settings, as a surrogate models in the DTS-CMA-ES on the set of noiseless benchmarks are reported.
Název v anglickém jazyce
Boosted Regression Forest for the Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy
Popis výsledku anglicky
Many real-world problems belong to the area of continuous black-box optimization, where evolutionary optimizers have become very popular in spite of the fact that such optimizers require a great amount of real-world fitness function evaluations, which can be very expensive or time-consuming. Hence, regression surrogate models are often utilized to evaluate some points instead of the fitness function. The Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy (DTS-CMA-ES) is a surrogate-assisted version of the state-of-the-art continuous black-box optimizer CMA-ES using Gausssian processes as a surrogate model to predict the whole distribution of the fitness function. In this paper, the DTS-CMAES is studied in connection with the boosted regression forest, another regression model capable to estimate the distribution. Results of testing regression forest and Gaussian processes, the former in 20 different settings, as a surrogate models in the DTS-CMA-ES on the set of noiseless benchmarks are reported.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01251S" target="_blank" >GA17-01251S: Metaučení pro extrakci pravidel s numerickými konsekventy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ITAT 2018: Information Technologies – Applications and Theory. Proceedings of the 18th conference ITAT 2018
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
8
Strana od-do
72-79
Název nakladatele
Technical University & CreateSpace Independent Publishing Platform
Místo vydání
Aachen
Místo konání akce
Plejsy
Datum konání akce
21. 9. 2018
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—