Boosted Regression Forest for the Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00326672" target="_blank" >RIV/68407700:21340/18:00326672 - isvavai.cz</a>
Výsledek na webu
<a href="http://ceur-ws.org/Vol-2203/72.pdf" target="_blank" >http://ceur-ws.org/Vol-2203/72.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Boosted Regression Forest for the Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy
Popis výsledku v původním jazyce
Many real-world problems belong to the area of continuous black-box optimization, where evolutionary optimizers have become very popular inspite of the fact that such optimizers require a great amount of real-world fitness function evaluations, which can be very expensive or time-consuming. Hence, regression surrogate models are often utilized to evaluate some points instead of the fitness function. The Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy (DTS-CMA-ES) is a surrogate-assisted version of the state-of-the-art continuous black-box optimizer CMA-ES using Gausssian processes as a surrogate model to predict the whole distribution of the fitness function. In this paper, the DTS-CMA-ES is studied in connection with the boosted regression forest, another regression model capable to estimate the distribution. Results of testing regression forest and Gaussian processes, the former in 20 different settings, as a surrogate models in the DTS-CMA-ES on the set of noiseless benchmarks are reported.
Název v anglickém jazyce
Boosted Regression Forest for the Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy
Popis výsledku anglicky
Many real-world problems belong to the area of continuous black-box optimization, where evolutionary optimizers have become very popular inspite of the fact that such optimizers require a great amount of real-world fitness function evaluations, which can be very expensive or time-consuming. Hence, regression surrogate models are often utilized to evaluate some points instead of the fitness function. The Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy (DTS-CMA-ES) is a surrogate-assisted version of the state-of-the-art continuous black-box optimizer CMA-ES using Gausssian processes as a surrogate model to predict the whole distribution of the fitness function. In this paper, the DTS-CMA-ES is studied in connection with the boosted regression forest, another regression model capable to estimate the distribution. Results of testing regression forest and Gaussian processes, the former in 20 different settings, as a surrogate models in the DTS-CMA-ES on the set of noiseless benchmarks are reported.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 18th Conference Information Technologies - Applications and Theory (ITAT 2018)
ISBN
9781727267198
ISSN
—
e-ISSN
1613-0073
Počet stran výsledku
8
Strana od-do
72-79
Název nakladatele
CEUR Workshop Proceedings
Místo vydání
Aachen
Místo konání akce
Krompachy
Datum konání akce
21. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—