Supermagic Graphs with Many Different Degrees
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10243571" target="_blank" >RIV/61989100:27240/21:10243571 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/21:10243571
Výsledek na webu
<a href="https://www.dmgt.uz.zgora.pl/publish/view_press.php?ID=7195" target="_blank" >https://www.dmgt.uz.zgora.pl/publish/view_press.php?ID=7195</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7151/dmgt.2227" target="_blank" >10.7151/dmgt.2227</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Supermagic Graphs with Many Different Degrees
Popis výsledku v původním jazyce
Let G = (V, E) be a graph with n vertices and e edges. A supermagic labeling of G is a bijection f from the set of edges E to a set of consecutive integers {a, a + 1, ..., a + e - 1} such that for every vertex v ϵ V the sum of labels of all adjacent edges equals the same constant k. This k is called a magic constant of f, and G is a supermagic graph. The existence of supermagic labeling for certain classes of graphs has been the scope of many papers. For a comprehensive overview see Gallian's Dynamic survey of graph labeling in the Electronic Journal of Combinatorics. So far, regular or almost regular graphs have been studied. This is natural, since the same magic constant has to be achieved both at vertices of high degree as well as at vertices of low degree, while the labels are distinct consecutive integers. The question of the existence of highly irregular supermagic graphs had remained open. In this paper we give a positive answer: the degree difference of a supermagic graph can be arbitrarily high. Moreover, we show that the composition G[Kn] is supermagic for every supermagic graph G and odd n.
Název v anglickém jazyce
Supermagic Graphs with Many Different Degrees
Popis výsledku anglicky
Let G = (V, E) be a graph with n vertices and e edges. A supermagic labeling of G is a bijection f from the set of edges E to a set of consecutive integers {a, a + 1, ..., a + e - 1} such that for every vertex v ϵ V the sum of labels of all adjacent edges equals the same constant k. This k is called a magic constant of f, and G is a supermagic graph. The existence of supermagic labeling for certain classes of graphs has been the scope of many papers. For a comprehensive overview see Gallian's Dynamic survey of graph labeling in the Electronic Journal of Combinatorics. So far, regular or almost regular graphs have been studied. This is natural, since the same magic constant has to be achieved both at vertices of high degree as well as at vertices of low degree, while the labels are distinct consecutive integers. The question of the existence of highly irregular supermagic graphs had remained open. In this paper we give a positive answer: the degree difference of a supermagic graph can be arbitrarily high. Moreover, we show that the composition G[Kn] is supermagic for every supermagic graph G and odd n.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discussiones Mathematicae Graph Theory
ISSN
1234-3099
e-ISSN
—
Svazek periodika
41
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
10
Strana od-do
1041-1050
Kód UT WoS článku
000667233200010
EID výsledku v databázi Scopus
2-s2.0-85068768749