Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Analysis of earthquake forecasting in India using supervised machine learning classifiers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10247167" target="_blank" >RIV/61989100:27240/21:10247167 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2071-1050/13/2/971" target="_blank" >https://www.mdpi.com/2071-1050/13/2/971</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/su13020971" target="_blank" >10.3390/su13020971</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Analysis of earthquake forecasting in India using supervised machine learning classifiers

  • Popis výsledku v původním jazyce

    Earthquakes are one of the most overwhelming types of natural hazards. As a result, successfully handling the situation they create is crucial. Due to earthquakes, many lives can be lost, alongside devastating impacts to the economy. The ability to forecast earthquakes is one of the biggest issues in geoscience. Machine learning technology can play a vital role in the field of geoscience for forecasting earthquakes. We aim to develop a method for forecasting the magnitude range of earthquakes using machine learning classifier algorithms. Three different ranges have been categorized: fatal earthquake; moderate earthquake; and mild earthquake. In order to distinguish between these classifications, seven different machine learning classifier algorithms have been used for building the model. To train the model, six different datasets of India and regions nearby to India have been used. The Bayes Net, Random Tree, Simple Logistic, Random Forest, Logistic Model Tree (LMT), ZeroR and Logistic Regression algorithms have been applied to each dataset. All of the models have been developed using the Weka tool and the results have been noted. It was observed that Simple Logistic and LMT classifiers performed well in each case. (C) 2021 by the authors. Licensee MDPI, Basel, Switzerland.

  • Název v anglickém jazyce

    Analysis of earthquake forecasting in India using supervised machine learning classifiers

  • Popis výsledku anglicky

    Earthquakes are one of the most overwhelming types of natural hazards. As a result, successfully handling the situation they create is crucial. Due to earthquakes, many lives can be lost, alongside devastating impacts to the economy. The ability to forecast earthquakes is one of the biggest issues in geoscience. Machine learning technology can play a vital role in the field of geoscience for forecasting earthquakes. We aim to develop a method for forecasting the magnitude range of earthquakes using machine learning classifier algorithms. Three different ranges have been categorized: fatal earthquake; moderate earthquake; and mild earthquake. In order to distinguish between these classifications, seven different machine learning classifier algorithms have been used for building the model. To train the model, six different datasets of India and regions nearby to India have been used. The Bayes Net, Random Tree, Simple Logistic, Random Forest, Logistic Model Tree (LMT), ZeroR and Logistic Regression algorithms have been applied to each dataset. All of the models have been developed using the Weka tool and the results have been noted. It was observed that Simple Logistic and LMT classifiers performed well in each case. (C) 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Sustainability

  • ISSN

    2071-1050

  • e-ISSN

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    13

  • Strana od-do

    1-13

  • Kód UT WoS článku

    000612058100001

  • EID výsledku v databázi Scopus

    2-s2.0-85099551478