Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Proficiency Level Classification of Foreign Language Learners Using Machine Learning Algorithms and Multilingual Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AZZ84PN8N" target="_blank" >RIV/00216208:11320/22:ZZ84PN8N - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-031-16014-1_21" target="_blank" >https://doi.org/10.1007/978-3-031-16014-1_21</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-16014-1_21" target="_blank" >10.1007/978-3-031-16014-1_21</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Proficiency Level Classification of Foreign Language Learners Using Machine Learning Algorithms and Multilingual Models

  • Popis výsledku v původním jazyce

    This paper addresses the problem of classifying the proficiency of second language learners using multilingual models. Such models can be extremely useful in applications supporting the learning of multiple, even rare languages. Experiments based on Czech, German and Italian languages have been reported in the literature. This dataset was extended with texts in English. SVM, random forest, and logistic regression methods were used to train the model with different sets of language features. For the monolingual models – which served as benchmarks – the best results were observed for the random forest and SVM methods. For multilingual models, in contrast to other studies, the best results were obtained using the SVM algorithm. Models trained on a feature set containing n-grams of POS, n-grams of dependencies, and POS distribution performed better than models trained only on n-grams of POS, used in other works on multilingual models. The experiments confirmed the feasibility of using multilingual models in place of monolingual ones. Multilingual models were also able to classify texts in a language that was not involved in model learning.

  • Název v anglickém jazyce

    Proficiency Level Classification of Foreign Language Learners Using Machine Learning Algorithms and Multilingual Models

  • Popis výsledku anglicky

    This paper addresses the problem of classifying the proficiency of second language learners using multilingual models. Such models can be extremely useful in applications supporting the learning of multiple, even rare languages. Experiments based on Czech, German and Italian languages have been reported in the literature. This dataset was extended with texts in English. SVM, random forest, and logistic regression methods were used to train the model with different sets of language features. For the monolingual models – which served as benchmarks – the best results were observed for the random forest and SVM methods. For multilingual models, in contrast to other studies, the best results were obtained using the SVM algorithm. Models trained on a feature set containing n-grams of POS, n-grams of dependencies, and POS distribution performed better than models trained only on n-grams of POS, used in other works on multilingual models. The experiments confirmed the feasibility of using multilingual models in place of monolingual ones. Multilingual models were also able to classify texts in a language that was not involved in model learning.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Computational Collective Intelligence

  • ISBN

    978-3-031-16014-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    261-271

  • Název nakladatele

    Springer International Publishing

  • Místo vydání

  • Místo konání akce

    Cham

  • Datum konání akce

    1. 1. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000871920200021