Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Power quality multi-step predictions with the gradually increasing selected input parameters using machine-learning and regression

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10247187" target="_blank" >RIV/61989100:27240/21:10247187 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S2352467721000138" target="_blank" >http://www.sciencedirect.com/science/article/pii/S2352467721000138</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.segan.2021.100442" target="_blank" >10.1016/j.segan.2021.100442</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Power quality multi-step predictions with the gradually increasing selected input parameters using machine-learning and regression

  • Popis výsledku v původním jazyce

    Autonomous off-grid systems dependent upon Renewable Energy (RE) sources are characterized by stochastic supplies of the fluctuating low short-circuit power. Power Quality (PQ) standards define load characteristics in electric power systems and their ability to function properly without failures. Monitoring, prediction and optimization of PQ parameters are necessary to maintain their alterations steady within the prescribed range, which allow fault-tolerant operation of various electrical devices. It is not possible to measure complete PQ data for all possible combinations of dozens of grid-connected appliances, whose load specifics and collisions primarily determine the course of PQ parameters and their eventual disturbances. Self-adapting PQ prediction models based on Artificial Intelligence (AI) are required as induced power is influenced particularly by changeable weather conditions in real off-grid operation mode of systems using RE. A novel multi-step PQ prediction algorithm is proposed, which develops AI models with the gradually increasing number of selected input PQ-parameters. In each next step a more complex model is formed, using an additional co-related PQ-input to calculate its target PQ-output with a better accuracy. PQ-models with the progressively growing PQ-inputs, using their data predicted in the previous step, can better approximate and estimate the target quantity. The presented results show this training and feature selection procedure can step by step improve accuracy of PQ-models for unknown combinations of off-grid connected household appliances. (C) 2021 Elsevier Ltd

  • Název v anglickém jazyce

    Power quality multi-step predictions with the gradually increasing selected input parameters using machine-learning and regression

  • Popis výsledku anglicky

    Autonomous off-grid systems dependent upon Renewable Energy (RE) sources are characterized by stochastic supplies of the fluctuating low short-circuit power. Power Quality (PQ) standards define load characteristics in electric power systems and their ability to function properly without failures. Monitoring, prediction and optimization of PQ parameters are necessary to maintain their alterations steady within the prescribed range, which allow fault-tolerant operation of various electrical devices. It is not possible to measure complete PQ data for all possible combinations of dozens of grid-connected appliances, whose load specifics and collisions primarily determine the course of PQ parameters and their eventual disturbances. Self-adapting PQ prediction models based on Artificial Intelligence (AI) are required as induced power is influenced particularly by changeable weather conditions in real off-grid operation mode of systems using RE. A novel multi-step PQ prediction algorithm is proposed, which develops AI models with the gradually increasing number of selected input PQ-parameters. In each next step a more complex model is formed, using an additional co-related PQ-input to calculate its target PQ-output with a better accuracy. PQ-models with the progressively growing PQ-inputs, using their data predicted in the previous step, can better approximate and estimate the target quantity. The presented results show this training and feature selection procedure can step by step improve accuracy of PQ-models for unknown combinations of off-grid connected household appliances. (C) 2021 Elsevier Ltd

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Sustainable Energy Grids &amp; Networks

  • ISSN

    2352-4677

  • e-ISSN

  • Svazek periodika

    26

  • Číslo periodika v rámci svazku

    26

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    000645076400010

  • EID výsledku v databázi Scopus

    2-s2.0-85101138456