Power quality multi-step predictions with the gradually increasing selected input parameters using machine-learning and regression
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10247187" target="_blank" >RIV/61989100:27240/21:10247187 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S2352467721000138" target="_blank" >http://www.sciencedirect.com/science/article/pii/S2352467721000138</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.segan.2021.100442" target="_blank" >10.1016/j.segan.2021.100442</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Power quality multi-step predictions with the gradually increasing selected input parameters using machine-learning and regression
Popis výsledku v původním jazyce
Autonomous off-grid systems dependent upon Renewable Energy (RE) sources are characterized by stochastic supplies of the fluctuating low short-circuit power. Power Quality (PQ) standards define load characteristics in electric power systems and their ability to function properly without failures. Monitoring, prediction and optimization of PQ parameters are necessary to maintain their alterations steady within the prescribed range, which allow fault-tolerant operation of various electrical devices. It is not possible to measure complete PQ data for all possible combinations of dozens of grid-connected appliances, whose load specifics and collisions primarily determine the course of PQ parameters and their eventual disturbances. Self-adapting PQ prediction models based on Artificial Intelligence (AI) are required as induced power is influenced particularly by changeable weather conditions in real off-grid operation mode of systems using RE. A novel multi-step PQ prediction algorithm is proposed, which develops AI models with the gradually increasing number of selected input PQ-parameters. In each next step a more complex model is formed, using an additional co-related PQ-input to calculate its target PQ-output with a better accuracy. PQ-models with the progressively growing PQ-inputs, using their data predicted in the previous step, can better approximate and estimate the target quantity. The presented results show this training and feature selection procedure can step by step improve accuracy of PQ-models for unknown combinations of off-grid connected household appliances. (C) 2021 Elsevier Ltd
Název v anglickém jazyce
Power quality multi-step predictions with the gradually increasing selected input parameters using machine-learning and regression
Popis výsledku anglicky
Autonomous off-grid systems dependent upon Renewable Energy (RE) sources are characterized by stochastic supplies of the fluctuating low short-circuit power. Power Quality (PQ) standards define load characteristics in electric power systems and their ability to function properly without failures. Monitoring, prediction and optimization of PQ parameters are necessary to maintain their alterations steady within the prescribed range, which allow fault-tolerant operation of various electrical devices. It is not possible to measure complete PQ data for all possible combinations of dozens of grid-connected appliances, whose load specifics and collisions primarily determine the course of PQ parameters and their eventual disturbances. Self-adapting PQ prediction models based on Artificial Intelligence (AI) are required as induced power is influenced particularly by changeable weather conditions in real off-grid operation mode of systems using RE. A novel multi-step PQ prediction algorithm is proposed, which develops AI models with the gradually increasing number of selected input PQ-parameters. In each next step a more complex model is formed, using an additional co-related PQ-input to calculate its target PQ-output with a better accuracy. PQ-models with the progressively growing PQ-inputs, using their data predicted in the previous step, can better approximate and estimate the target quantity. The presented results show this training and feature selection procedure can step by step improve accuracy of PQ-models for unknown combinations of off-grid connected household appliances. (C) 2021 Elsevier Ltd
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainable Energy Grids & Networks
ISSN
2352-4677
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
26
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000645076400010
EID výsledku v databázi Scopus
2-s2.0-85101138456