Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Power quality statistical predictions based on differential, deep and probabilistic learning us-ing off-grid and meteo data in 24-hour horizon

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10248193" target="_blank" >RIV/61989100:27240/21:10248193 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/er.7431" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/er.7431</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Power quality statistical predictions based on differential, deep and probabilistic learning us-ing off-grid and meteo data in 24-hour horizon

  • Popis výsledku v původním jazyce

    Off-grid systems using Renewable Energy (RE) are dependent on the stochastic power supply, which results in a high level of uncertainty, noise and variability in the operational conditions. Power Quality (PQ) norms specify allowable variations in relevant parameters of grid systems, necessary to maintain in certain limits to guarantee their fault-tolerant states. 24-hour PQ-prediction is vital in planning of power consumption and utilization in smart off-grid houses based on RE. PQ-data for all possible combinations of grid-attached household appliances and variable out-side conditions cannot be measured completely or described exactly by physical equations. PQ-predictions on daily bases using Artificial Intelligence (AI) models are requisite because atmospheric fluctuations and anomalies in local weather primarily influence the induced power and potential operation mode in real off-grids. Load specifics and possible collisions of the switched-on power consumers together with alterations in RE production can lead to additional disturbances in PQ and the consequent instability of the autonomous system. An automatic selection algorithm can preliminary suggest or correct several eventual energy consumption variants based on load time-shifting, to allow efficient utilization of the predicted Photo-Voltaic Power (PVP). PQ models can after examine feasible daily load scenarios, offered by the system or re-defined by the users, scheduling selected equipment in the optimal switch-intervals to ensure primarily the system stability. Users will have several practical options to choose or combine the best ones to meet their demand in the optimal PQ and load planning strategy. This 2-step self-determination and verification procedure can help in effective operation of smart-grids in consolidation of their future state, balancing its power demands with local RE potential. The AI statistical models were evolved with the pre-assessed lengths of daily data periods. After that, they are applied to the last unseen data series, used in testing, to predict one-step sequences of the target PQ-parameters in the trained all-day horizon. Parametric C++ application software with applied PQ and weather data is available for free to allow reproducibility of the results.

  • Název v anglickém jazyce

    Power quality statistical predictions based on differential, deep and probabilistic learning us-ing off-grid and meteo data in 24-hour horizon

  • Popis výsledku anglicky

    Off-grid systems using Renewable Energy (RE) are dependent on the stochastic power supply, which results in a high level of uncertainty, noise and variability in the operational conditions. Power Quality (PQ) norms specify allowable variations in relevant parameters of grid systems, necessary to maintain in certain limits to guarantee their fault-tolerant states. 24-hour PQ-prediction is vital in planning of power consumption and utilization in smart off-grid houses based on RE. PQ-data for all possible combinations of grid-attached household appliances and variable out-side conditions cannot be measured completely or described exactly by physical equations. PQ-predictions on daily bases using Artificial Intelligence (AI) models are requisite because atmospheric fluctuations and anomalies in local weather primarily influence the induced power and potential operation mode in real off-grids. Load specifics and possible collisions of the switched-on power consumers together with alterations in RE production can lead to additional disturbances in PQ and the consequent instability of the autonomous system. An automatic selection algorithm can preliminary suggest or correct several eventual energy consumption variants based on load time-shifting, to allow efficient utilization of the predicted Photo-Voltaic Power (PVP). PQ models can after examine feasible daily load scenarios, offered by the system or re-defined by the users, scheduling selected equipment in the optimal switch-intervals to ensure primarily the system stability. Users will have several practical options to choose or combine the best ones to meet their demand in the optimal PQ and load planning strategy. This 2-step self-determination and verification procedure can help in effective operation of smart-grids in consolidation of their future state, balancing its power demands with local RE potential. The AI statistical models were evolved with the pre-assessed lengths of daily data periods. After that, they are applied to the last unseen data series, used in testing, to predict one-step sequences of the target PQ-parameters in the trained all-day horizon. Parametric C++ application software with applied PQ and weather data is available for free to allow reproducibility of the results.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Energy Research

  • ISSN

    0363-907X

  • e-ISSN

    1099-114X

  • Svazek periodika

    46

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    1-15

  • Kód UT WoS článku

    000712589200001

  • EID výsledku v databázi Scopus