Speed control for leader-follower robot formation using fuzzy system and supervised machine learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10247460" target="_blank" >RIV/61989100:27240/21:10247460 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1424-8220/21/10/3433" target="_blank" >https://www.mdpi.com/1424-8220/21/10/3433</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s21103433" target="_blank" >10.3390/s21103433</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Speed control for leader-follower robot formation using fuzzy system and supervised machine learning
Popis výsledku v původním jazyce
Mobile robots are endeavoring toward full autonomy. To that end, wheeled mobile robots have to function under non-holonomic constraints and uncertainty derived by feedback sensors and/or internal dynamics. Speed control is one of the main and challenging objectives in the endeavor for efficient autonomous collision-free navigation. This paper proposes an intelligent technique for speed control of a wheeled mobile robot using a combination of fuzzy logic and supervised machine learning (SML). The technique is appropriate for flexible leader-follower formation control on straight paths where a follower robot maintains a safely varying distance from a leader robot. A fuzzy controller specifies the ultimate distance of the follower to the leader using the measurements obtained from two ultrasonic sensors. An SML algorithm estimates a proper speed for the follower based on the ultimate distance. Simulations demonstrated that the proposed technique appropriately adjusts the follower robot's speed to maintain a flexible formation with the leader robot. (C) 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Název v anglickém jazyce
Speed control for leader-follower robot formation using fuzzy system and supervised machine learning
Popis výsledku anglicky
Mobile robots are endeavoring toward full autonomy. To that end, wheeled mobile robots have to function under non-holonomic constraints and uncertainty derived by feedback sensors and/or internal dynamics. Speed control is one of the main and challenging objectives in the endeavor for efficient autonomous collision-free navigation. This paper proposes an intelligent technique for speed control of a wheeled mobile robot using a combination of fuzzy logic and supervised machine learning (SML). The technique is appropriate for flexible leader-follower formation control on straight paths where a follower robot maintains a safely varying distance from a leader robot. A fuzzy controller specifies the ultimate distance of the follower to the leader using the measurements obtained from two ultrasonic sensors. An SML algorithm estimates a proper speed for the follower based on the ultimate distance. Simulations demonstrated that the proposed technique appropriately adjusts the follower robot's speed to maintain a flexible formation with the leader robot. (C) 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors. Vol. 20
ISSN
1424-8220
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000662523600001
EID výsledku v databázi Scopus
2-s2.0-85105734593