An intelligent approach for autonomous mobile robots path planning based on adaptive neuro-fuzzy inference system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10247489" target="_blank" >RIV/61989100:27240/22:10247489 - isvavai.cz</a>
Výsledek na webu
<a href="https://reader.elsevier.com/reader/sd/pii/S2090447921002276?token=35DD72166025EB9DB4CF179D02F9ACA43877AD0AFC609D9649C0899CA2A6E837D57351394E0E2C071786B11121E36CAB&originRegion=eu-west-1&originCreation=20220316085739" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S2090447921002276?token=35DD72166025EB9DB4CF179D02F9ACA43877AD0AFC609D9649C0899CA2A6E837D57351394E0E2C071786B11121E36CAB&originRegion=eu-west-1&originCreation=20220316085739</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asej.2021.05.005" target="_blank" >10.1016/j.asej.2021.05.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An intelligent approach for autonomous mobile robots path planning based on adaptive neuro-fuzzy inference system
Popis výsledku v původním jazyce
This paper proposes an efficient path planning technique for the autonomous collision-free navigation of wheeled mobile robots with simple hardware based on an adaptive neuro-fuzzy inference system (ANFIS). The distance between the robot and obstacles is measured using three ultrasonic sensors that are installed on the left, front, and right of the robot. These distances from the sensors form the inputs to the ANFIS-utility function block that calculates an obstacle avoidance steering angle for the robot. The obstacle avoidance behavior of the robot is modeled under six scenarios of facing an obstacle. The instantaneous position of the robot and the target are available from Global Positioning System (GPS) modules. A simulation mobile robot in V-REP has been integrated into the ANFIS controller coded in MATLAB. The simulation results show that the proposed ANFIS-utility function-based path planning technique surpasses some of the related algorithms in terms of finding near-optimal paths. (C) 2021 THE AUTHORS
Název v anglickém jazyce
An intelligent approach for autonomous mobile robots path planning based on adaptive neuro-fuzzy inference system
Popis výsledku anglicky
This paper proposes an efficient path planning technique for the autonomous collision-free navigation of wheeled mobile robots with simple hardware based on an adaptive neuro-fuzzy inference system (ANFIS). The distance between the robot and obstacles is measured using three ultrasonic sensors that are installed on the left, front, and right of the robot. These distances from the sensors form the inputs to the ANFIS-utility function block that calculates an obstacle avoidance steering angle for the robot. The obstacle avoidance behavior of the robot is modeled under six scenarios of facing an obstacle. The instantaneous position of the robot and the target are available from Global Positioning System (GPS) modules. A simulation mobile robot in V-REP has been integrated into the ANFIS controller coded in MATLAB. The simulation results show that the proposed ANFIS-utility function-based path planning technique surpasses some of the related algorithms in terms of finding near-optimal paths. (C) 2021 THE AUTHORS
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ain Shams Engineering Journal
ISSN
2090-4479
e-ISSN
2090-4495
Svazek periodika
13
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
nestrankovano
Kód UT WoS článku
000751100600009
EID výsledku v databázi Scopus
2-s2.0-85106276541