A new perceptual evaluation method of video quality based on neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10248276" target="_blank" >RIV/61989100:27240/21:10248276 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/21:10248276
Výsledek na webu
<a href="https://content.iospress.com/articles/intelligent-data-analysis/ida205085" target="_blank" >https://content.iospress.com/articles/intelligent-data-analysis/ida205085</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/IDA-205085" target="_blank" >10.3233/IDA-205085</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A new perceptual evaluation method of video quality based on neural network
Popis výsledku v původním jazyce
This paper proposes a novel method for video quality evaluation based on machine learning technique. The current research deals with the correct interpretation of objective video quality evaluation (Quality of Service - QoS) in relation to subjective end-user perception (Quality of Experience - QoE), typically expressed by mean opinion score (MOS). Our method allows us to interconnect results obtained from video objective and subjective assessment methods in the form of a neural network (computing model inspired by biological neural networks). So far, no unified interpretation scale has been standardized for both approaches, therefore it is difficult to determine the level of end-user satisfaction obtained from the objective assessment. Thus, contribution of the proposed method lies in description of the way to create a hybrid metric that delivers fast and reliable subjective score of perceived video quality for internet television (IPTV) broadcasting companies.
Název v anglickém jazyce
A new perceptual evaluation method of video quality based on neural network
Popis výsledku anglicky
This paper proposes a novel method for video quality evaluation based on machine learning technique. The current research deals with the correct interpretation of objective video quality evaluation (Quality of Service - QoS) in relation to subjective end-user perception (Quality of Experience - QoE), typically expressed by mean opinion score (MOS). Our method allows us to interconnect results obtained from video objective and subjective assessment methods in the form of a neural network (computing model inspired by biological neural networks). So far, no unified interpretation scale has been standardized for both approaches, therefore it is difficult to determine the level of end-user satisfaction obtained from the objective assessment. Thus, contribution of the proposed method lies in description of the way to create a hybrid metric that delivers fast and reliable subjective score of perceived video quality for internet television (IPTV) broadcasting companies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018140" target="_blank" >LM2018140: e-Infrastruktura CZ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Intelligent Data Analysis
ISSN
1088-467X
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
571-587
Kód UT WoS článku
000644439500006
EID výsledku v databázi Scopus
—