Analysis of Optical Mapping Data with Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10248618" target="_blank" >RIV/61989100:27240/21:10248618 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-84910-8_26" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-84910-8_26</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-84910-8_26" target="_blank" >10.1007/978-3-030-84910-8_26</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of Optical Mapping Data with Neural Network
Popis výsledku v původním jazyce
Optical Mapping is a method of DNA sequencing, that can be used to detect large structural variations in genomes. To create these optical maps, a restriction enzyme is mixed with DNA where the enzyme binds to DNA creating labels called restriction sites. These restriction sites and can be captured by fluorescent microscope with a camera. One of the tools that can capture these images is Bionano Genomics Saphyr mapping instrument. Their system produces high-resolution images of DNA molecules with restriction sites and their software detects them. Molecules in these images are visualized by gray lines with restrictions sites appearing brighter. Some of these molecules have very low brightness and with static noise around them, they are almost indistinguishable from the background. This work proposes GPU accelerated method for molecule detection. A neural network was used for molecule segmentation from the image and the dataset for the network was created from the results of Bionano Genomics tools. This detection method can be used as a substitute for restriction map detection in the Bionano Genomics processing pipeline or as a tool that can highlight the regions of interest in the raw optical maps images. (C) 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Název v anglickém jazyce
Analysis of Optical Mapping Data with Neural Network
Popis výsledku anglicky
Optical Mapping is a method of DNA sequencing, that can be used to detect large structural variations in genomes. To create these optical maps, a restriction enzyme is mixed with DNA where the enzyme binds to DNA creating labels called restriction sites. These restriction sites and can be captured by fluorescent microscope with a camera. One of the tools that can capture these images is Bionano Genomics Saphyr mapping instrument. Their system produces high-resolution images of DNA molecules with restriction sites and their software detects them. Molecules in these images are visualized by gray lines with restrictions sites appearing brighter. Some of these molecules have very low brightness and with static noise around them, they are almost indistinguishable from the background. This work proposes GPU accelerated method for molecule detection. A neural network was used for molecule segmentation from the image and the dataset for the network was created from the results of Bionano Genomics tools. This detection method can be used as a substitute for restriction map detection in the Bionano Genomics processing pipeline or as a tool that can highlight the regions of interest in the raw optical maps images. (C) 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/NU20-06-00269" target="_blank" >NU20-06-00269: Využití buněčných profilů a proteomiky synoviální tekutiny, případně tkání pro podporu klinického rozhodování u osteoartrózy kolena</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems. Volume 312
ISBN
978-3-030-84909-2
ISSN
2367-3370
e-ISSN
2367-3389
Počet stran výsledku
10
Strana od-do
243-252
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Tchaj-čung
Datum konání akce
1. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—