Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Self-Adaptive Spherical Search With a Low-Precision Projection Matrix for Real-World Optimization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10248872" target="_blank" >RIV/61989100:27240/21:10248872 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9646531" target="_blank" >https://ieeexplore.ieee.org/document/9646531</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TCYB.2021.3119386" target="_blank" >10.1109/TCYB.2021.3119386</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Self-Adaptive Spherical Search With a Low-Precision Projection Matrix for Real-World Optimization

  • Popis výsledku v původním jazyce

    Since the last three decades, numerous search strategies have been introduced within the framework of different evolutionary algorithms (EAs). Most of the popular search strategies operate on the hypercube (HC) search model, and search models based on other hypershapes, such as hyper-spherical (HS), are not investigated well yet. The recently developed spherical search (SS) algorithm utilizing the HS search model has been shown to perform very well for the bound-constrained and constrained optimization problems compared to several state-of-the-art algorithms. Nevertheless, the computational burdens for generating an HS locus are higher than that for an HC locus. We propose an efficient technique to construct an HS locus by approximating the orthogonal projection matrix to resolve this issue. As per our empirical experiments, this technique significantly improves the performance of the original SS with less computational effort. Moreover, to enhance SS&apos;s search capability, we put forth a self-adaptation technique for choosing the effective values of the control parameters dynamically during the optimization process. We validate the proposed algorithm&apos;s performance on a plethora of real-world and benchmark optimization problems with and without constraints. Experimental results suggest that the proposed algorithm remains better than or at least comparable to the best-known state-of-the-art algorithms on a wide spectrum of problems.

  • Název v anglickém jazyce

    Self-Adaptive Spherical Search With a Low-Precision Projection Matrix for Real-World Optimization

  • Popis výsledku anglicky

    Since the last three decades, numerous search strategies have been introduced within the framework of different evolutionary algorithms (EAs). Most of the popular search strategies operate on the hypercube (HC) search model, and search models based on other hypershapes, such as hyper-spherical (HS), are not investigated well yet. The recently developed spherical search (SS) algorithm utilizing the HS search model has been shown to perform very well for the bound-constrained and constrained optimization problems compared to several state-of-the-art algorithms. Nevertheless, the computational burdens for generating an HS locus are higher than that for an HC locus. We propose an efficient technique to construct an HS locus by approximating the orthogonal projection matrix to resolve this issue. As per our empirical experiments, this technique significantly improves the performance of the original SS with less computational effort. Moreover, to enhance SS&apos;s search capability, we put forth a self-adaptation technique for choosing the effective values of the control parameters dynamically during the optimization process. We validate the proposed algorithm&apos;s performance on a plethora of real-world and benchmark optimization problems with and without constraints. Experimental results suggest that the proposed algorithm remains better than or at least comparable to the best-known state-of-the-art algorithms on a wide spectrum of problems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTAIN19176" target="_blank" >LTAIN19176: Metaheuristický rámec pro vícecílové kombinatorické optimalizační problémy (META MO-COP)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Cybernetics

  • ISSN

    2168-2267

  • e-ISSN

    2168-2275

  • Svazek periodika

    nezaveden

  • Číslo periodika v rámci svazku

    prosinec 2021

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000732877100001

  • EID výsledku v databázi Scopus