Self-Adaptive Spherical Search With a Low-Precision Projection Matrix for Real-World Optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10248872" target="_blank" >RIV/61989100:27240/21:10248872 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9646531" target="_blank" >https://ieeexplore.ieee.org/document/9646531</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TCYB.2021.3119386" target="_blank" >10.1109/TCYB.2021.3119386</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-Adaptive Spherical Search With a Low-Precision Projection Matrix for Real-World Optimization
Popis výsledku v původním jazyce
Since the last three decades, numerous search strategies have been introduced within the framework of different evolutionary algorithms (EAs). Most of the popular search strategies operate on the hypercube (HC) search model, and search models based on other hypershapes, such as hyper-spherical (HS), are not investigated well yet. The recently developed spherical search (SS) algorithm utilizing the HS search model has been shown to perform very well for the bound-constrained and constrained optimization problems compared to several state-of-the-art algorithms. Nevertheless, the computational burdens for generating an HS locus are higher than that for an HC locus. We propose an efficient technique to construct an HS locus by approximating the orthogonal projection matrix to resolve this issue. As per our empirical experiments, this technique significantly improves the performance of the original SS with less computational effort. Moreover, to enhance SS's search capability, we put forth a self-adaptation technique for choosing the effective values of the control parameters dynamically during the optimization process. We validate the proposed algorithm's performance on a plethora of real-world and benchmark optimization problems with and without constraints. Experimental results suggest that the proposed algorithm remains better than or at least comparable to the best-known state-of-the-art algorithms on a wide spectrum of problems.
Název v anglickém jazyce
Self-Adaptive Spherical Search With a Low-Precision Projection Matrix for Real-World Optimization
Popis výsledku anglicky
Since the last three decades, numerous search strategies have been introduced within the framework of different evolutionary algorithms (EAs). Most of the popular search strategies operate on the hypercube (HC) search model, and search models based on other hypershapes, such as hyper-spherical (HS), are not investigated well yet. The recently developed spherical search (SS) algorithm utilizing the HS search model has been shown to perform very well for the bound-constrained and constrained optimization problems compared to several state-of-the-art algorithms. Nevertheless, the computational burdens for generating an HS locus are higher than that for an HC locus. We propose an efficient technique to construct an HS locus by approximating the orthogonal projection matrix to resolve this issue. As per our empirical experiments, this technique significantly improves the performance of the original SS with less computational effort. Moreover, to enhance SS's search capability, we put forth a self-adaptation technique for choosing the effective values of the control parameters dynamically during the optimization process. We validate the proposed algorithm's performance on a plethora of real-world and benchmark optimization problems with and without constraints. Experimental results suggest that the proposed algorithm remains better than or at least comparable to the best-known state-of-the-art algorithms on a wide spectrum of problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAIN19176" target="_blank" >LTAIN19176: Metaheuristický rámec pro vícecílové kombinatorické optimalizační problémy (META MO-COP)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Cybernetics
ISSN
2168-2267
e-ISSN
2168-2275
Svazek periodika
nezaveden
Číslo periodika v rámci svazku
prosinec 2021
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
nestrankovano
Kód UT WoS článku
000732877100001
EID výsledku v databázi Scopus
—