Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improved spherical search with local distribution induced self-adaptation for hard non-convex optimization with and without constraints

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251907" target="_blank" >RIV/61989100:27240/22:10251907 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0020025522010805?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025522010805?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ins.2022.09.033" target="_blank" >10.1016/j.ins.2022.09.033</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improved spherical search with local distribution induced self-adaptation for hard non-convex optimization with and without constraints

  • Popis výsledku v původním jazyce

    Most metaheuristic optimizers rely heavily on precisely setting their control parameters and search operators to perform well. Considering the complexity of real-world problems, it is always preferable to adjust control parameter values automatically rather than clamp-ing them to a fixed value. In recent years, Spherical Search (SS) has emerged as a population-based stochastic optimization method that exploits the concepts of random projection matrices in linear algebra. As a result of the success of SS in solving non -convex, real-parameter optimization problems of various complexity, we have significantly extended SS in this paper by introducing a set of new algorithms, collectively known as Self Adaptive Spherical Search (SASS). Our proposal aims to enhance the performance of SS by using different projection matrix schemes in conjunction with improved search-direction calculations and an adaptive modification of parameter values. In our proposed adaptation scheme, parameters are modified to relevant values by applying a self-adaptive process that does not rely upon prior knowledge of the correlation between the parameter values and characteristics of the problem space. Consequently, we may apply the algorithms to bound and nonlinearly constrained optimization problems. For the benchmark suites derived from the most recent IEEE Congress on Evolutionary Computation (CEC) competi-tions, simulation results indicate that the SASS family of algorithms performs better than or is comparable to state-of-the-art algorithms from the other paradigms concerning robust-ness and convergence.(c) 2022 Published by Elsevier Inc.

  • Název v anglickém jazyce

    Improved spherical search with local distribution induced self-adaptation for hard non-convex optimization with and without constraints

  • Popis výsledku anglicky

    Most metaheuristic optimizers rely heavily on precisely setting their control parameters and search operators to perform well. Considering the complexity of real-world problems, it is always preferable to adjust control parameter values automatically rather than clamp-ing them to a fixed value. In recent years, Spherical Search (SS) has emerged as a population-based stochastic optimization method that exploits the concepts of random projection matrices in linear algebra. As a result of the success of SS in solving non -convex, real-parameter optimization problems of various complexity, we have significantly extended SS in this paper by introducing a set of new algorithms, collectively known as Self Adaptive Spherical Search (SASS). Our proposal aims to enhance the performance of SS by using different projection matrix schemes in conjunction with improved search-direction calculations and an adaptive modification of parameter values. In our proposed adaptation scheme, parameters are modified to relevant values by applying a self-adaptive process that does not rely upon prior knowledge of the correlation between the parameter values and characteristics of the problem space. Consequently, we may apply the algorithms to bound and nonlinearly constrained optimization problems. For the benchmark suites derived from the most recent IEEE Congress on Evolutionary Computation (CEC) competi-tions, simulation results indicate that the SASS family of algorithms performs better than or is comparable to state-of-the-art algorithms from the other paradigms concerning robust-ness and convergence.(c) 2022 Published by Elsevier Inc.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information sciences

  • ISSN

    0020-0255

  • e-ISSN

    1872-6291

  • Svazek periodika

    615

  • Číslo periodika v rámci svazku

    listopad 2022

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    34

  • Strana od-do

    604-637

  • Kód UT WoS článku

    000877037400013

  • EID výsledku v databázi Scopus