Improved spherical search with local distribution induced self-adaptation for hard non-convex optimization with and without constraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251907" target="_blank" >RIV/61989100:27240/22:10251907 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020025522010805?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025522010805?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2022.09.033" target="_blank" >10.1016/j.ins.2022.09.033</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improved spherical search with local distribution induced self-adaptation for hard non-convex optimization with and without constraints
Popis výsledku v původním jazyce
Most metaheuristic optimizers rely heavily on precisely setting their control parameters and search operators to perform well. Considering the complexity of real-world problems, it is always preferable to adjust control parameter values automatically rather than clamp-ing them to a fixed value. In recent years, Spherical Search (SS) has emerged as a population-based stochastic optimization method that exploits the concepts of random projection matrices in linear algebra. As a result of the success of SS in solving non -convex, real-parameter optimization problems of various complexity, we have significantly extended SS in this paper by introducing a set of new algorithms, collectively known as Self Adaptive Spherical Search (SASS). Our proposal aims to enhance the performance of SS by using different projection matrix schemes in conjunction with improved search-direction calculations and an adaptive modification of parameter values. In our proposed adaptation scheme, parameters are modified to relevant values by applying a self-adaptive process that does not rely upon prior knowledge of the correlation between the parameter values and characteristics of the problem space. Consequently, we may apply the algorithms to bound and nonlinearly constrained optimization problems. For the benchmark suites derived from the most recent IEEE Congress on Evolutionary Computation (CEC) competi-tions, simulation results indicate that the SASS family of algorithms performs better than or is comparable to state-of-the-art algorithms from the other paradigms concerning robust-ness and convergence.(c) 2022 Published by Elsevier Inc.
Název v anglickém jazyce
Improved spherical search with local distribution induced self-adaptation for hard non-convex optimization with and without constraints
Popis výsledku anglicky
Most metaheuristic optimizers rely heavily on precisely setting their control parameters and search operators to perform well. Considering the complexity of real-world problems, it is always preferable to adjust control parameter values automatically rather than clamp-ing them to a fixed value. In recent years, Spherical Search (SS) has emerged as a population-based stochastic optimization method that exploits the concepts of random projection matrices in linear algebra. As a result of the success of SS in solving non -convex, real-parameter optimization problems of various complexity, we have significantly extended SS in this paper by introducing a set of new algorithms, collectively known as Self Adaptive Spherical Search (SASS). Our proposal aims to enhance the performance of SS by using different projection matrix schemes in conjunction with improved search-direction calculations and an adaptive modification of parameter values. In our proposed adaptation scheme, parameters are modified to relevant values by applying a self-adaptive process that does not rely upon prior knowledge of the correlation between the parameter values and characteristics of the problem space. Consequently, we may apply the algorithms to bound and nonlinearly constrained optimization problems. For the benchmark suites derived from the most recent IEEE Congress on Evolutionary Computation (CEC) competi-tions, simulation results indicate that the SASS family of algorithms performs better than or is comparable to state-of-the-art algorithms from the other paradigms concerning robust-ness and convergence.(c) 2022 Published by Elsevier Inc.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information sciences
ISSN
0020-0255
e-ISSN
1872-6291
Svazek periodika
615
Číslo periodika v rámci svazku
listopad 2022
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
34
Strana od-do
604-637
Kód UT WoS článku
000877037400013
EID výsledku v databázi Scopus
—