Data-Driven Self-Learning Controller Design Approach for Power-Aware IoT Devices based on Double Q-Learning Strategy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10249506" target="_blank" >RIV/61989100:27240/21:10249506 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9659989" target="_blank" >https://ieeexplore.ieee.org/document/9659989</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SSCI50451.2021.9659989" target="_blank" >10.1109/SSCI50451.2021.9659989</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data-Driven Self-Learning Controller Design Approach for Power-Aware IoT Devices based on Double Q-Learning Strategy
Popis výsledku v původním jazyce
Operational cycle control is an attractive field of research which can lead to improvements in the services offered by power-aware monitoring embedded IoT devices. Machine learning (ML) is an infrastructure for operational cycle control and provides many approaches which provide more energy-efficient operation. One subfield of ML is Q-learning (QL), which forms the basis of the data-driven self-learning (DDSL) controller. The DDSL algorithm dynamically sets operational duty cycles according to estimates of future collected data values, leading to effective operation of power-aware systems. However, QL performs very poorly in stochastic environments as a result of overestimation of action values. The double estimator implemented in QL therefore applies Double QL (DQL) and forms the basis for a novel Double DDSL (DDDSL). The results of testing a DDDSL controller on historical data showed 42-50 % greater performance than a controller with a fixed duty-cycle, and 2-12 % more performance than a DDSL controller. (C) 2021 IEEE.
Název v anglickém jazyce
Data-Driven Self-Learning Controller Design Approach for Power-Aware IoT Devices based on Double Q-Learning Strategy
Popis výsledku anglicky
Operational cycle control is an attractive field of research which can lead to improvements in the services offered by power-aware monitoring embedded IoT devices. Machine learning (ML) is an infrastructure for operational cycle control and provides many approaches which provide more energy-efficient operation. One subfield of ML is Q-learning (QL), which forms the basis of the data-driven self-learning (DDSL) controller. The DDSL algorithm dynamically sets operational duty cycles according to estimates of future collected data values, leading to effective operation of power-aware systems. However, QL performs very poorly in stochastic environments as a result of overestimation of action values. The double estimator implemented in QL therefore applies Double QL (DQL) and forms the basis for a novel Double DDSL (DDDSL). The results of testing a DDDSL controller on historical data showed 42-50 % greater performance than a controller with a fixed duty-cycle, and 2-12 % more performance than a DDSL controller. (C) 2021 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - proceedings
ISBN
978-1-72819-048-8
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Orlando
Datum konání akce
5. 12. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—