Robustness Analysis of Data-Driven Self-Learning Controllers for IoT Environmental Monitoring Nodes based on Q-learning Approaches
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251745" target="_blank" >RIV/61989100:27240/22:10251745 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10022151" target="_blank" >https://ieeexplore.ieee.org/document/10022151</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SSCI51031.2022.10022151" target="_blank" >10.1109/SSCI51031.2022.10022151</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robustness Analysis of Data-Driven Self-Learning Controllers for IoT Environmental Monitoring Nodes based on Q-learning Approaches
Popis výsledku v původním jazyce
Today we are seeing a significant need for efficient control of operating cycles to deliver improvements in services provided by Internet of Things (IoT) devices embedded with environmental monitoring. To design an algorithm which provides sufficient duty-cycle control, we can apply machine learning approaches. The present study investigates the reinforcement learning (RL) algorithm family, especially Q-learning (QL) and Double Q-learning (DQL) algorithms and their suitability for devices deployed in a range of locations. We present a comprehensive analysis of the implemented RL approaches for regulating data-driven self-learning (DDSL) controllers. We tested QL and DQL algorithms on various datasets and evaluated their performance with a statistical analysis. The results indicated that the QL and the DQL approaches were highly dependent on the nature of the environmental parameters which the DDSL controller detected and recorded. (C) 2022 IEEE.
Název v anglickém jazyce
Robustness Analysis of Data-Driven Self-Learning Controllers for IoT Environmental Monitoring Nodes based on Q-learning Approaches
Popis výsledku anglicky
Today we are seeing a significant need for efficient control of operating cycles to deliver improvements in services provided by Internet of Things (IoT) devices embedded with environmental monitoring. To design an algorithm which provides sufficient duty-cycle control, we can apply machine learning approaches. The present study investigates the reinforcement learning (RL) algorithm family, especially Q-learning (QL) and Double Q-learning (DQL) algorithms and their suitability for devices deployed in a range of locations. We present a comprehensive analysis of the implemented RL approaches for regulating data-driven self-learning (DDSL) controllers. We tested QL and DQL algorithms on various datasets and evaluated their performance with a statistical analysis. The results indicated that the QL and the DQL approaches were highly dependent on the nature of the environmental parameters which the DDSL controller detected and recorded. (C) 2022 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 IEEE Symposium Series on Computational Intelligence, SSCI 2022 : proceedings : 4-7 december 2022, Singapore
ISBN
978-1-66548-769-6
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
721-727
Název nakladatele
IEEE - Institute of Electrical and Electronics Engineers
Místo vydání
Piscataway
Místo konání akce
Singapur
Datum konání akce
4. 12. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—