An Analysis of Double Q-learning Based Energy Management Strategies for TEG-powered IoT Devices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253446" target="_blank" >RIV/61989100:27240/23:10253446 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10145999" target="_blank" >https://ieeexplore.ieee.org/document/10145999</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JIOT.2023.3283599" target="_blank" >10.1109/JIOT.2023.3283599</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Analysis of Double Q-learning Based Energy Management Strategies for TEG-powered IoT Devices
Popis výsledku v původním jazyce
The study presents a self-learning controller for managing the energy in an Internet-of-Things (IoT) device powered by energy harvested from a thermoelectric generator (TEG). The device's controller is based on a double Q-learning (DQL) method; the hardware incorporates a TEG energy harvesting subsystem with a DC/DC converter, a load module with a microcontroller, and a LoRaWAN communications interface. The model is controlled according to adaptive measurements and transmission periods. The controller's reward policy evaluates the level of charge available to the device. The controller applies and evaluates various learning parameters and reduces the learning rate over time. Using four years of historical soil temperature data in an experimental simulation of several controller configurations, the DQL controller demonstrated correct operation, a low learning rate and high cumulative rewards. The best energy management controller operated with a completed cycle and missed cycle ratio of 98.5 %. The novelty of the presented approach is discussed in relation to state-of-the-art methods in adaptive ability, learning processes and practical applications of the device. Author
Název v anglickém jazyce
An Analysis of Double Q-learning Based Energy Management Strategies for TEG-powered IoT Devices
Popis výsledku anglicky
The study presents a self-learning controller for managing the energy in an Internet-of-Things (IoT) device powered by energy harvested from a thermoelectric generator (TEG). The device's controller is based on a double Q-learning (DQL) method; the hardware incorporates a TEG energy harvesting subsystem with a DC/DC converter, a load module with a microcontroller, and a LoRaWAN communications interface. The model is controlled according to adaptive measurements and transmission periods. The controller's reward policy evaluates the level of charge available to the device. The controller applies and evaluates various learning parameters and reduces the learning rate over time. Using four years of historical soil temperature data in an experimental simulation of several controller configurations, the DQL controller demonstrated correct operation, a low learning rate and high cumulative rewards. The best energy management controller operated with a completed cycle and missed cycle ratio of 98.5 %. The novelty of the presented approach is discussed in relation to state-of-the-art methods in adaptive ability, learning processes and practical applications of the device. Author
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/FW03010194" target="_blank" >FW03010194: Vývoj systému pro monitoring a vyhodnocení vybraných rizikových faktorů fyzické zátěže pracovních operací v kontextu Průmyslu 4.0.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Internet of Things Journal
ISSN
2327-4662
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
18919-18929
Kód UT WoS článku
001098109800046
EID výsledku v databázi Scopus
2-s2.0-85161612417