Q-learning Energy Management Strategy for TEG-powered Environmental Monitoring IoT Devices: A Pilot Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251746" target="_blank" >RIV/61989100:27240/22:10251746 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/10022025" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10022025</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SSCI51031.2022.10022025" target="_blank" >10.1109/SSCI51031.2022.10022025</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Q-learning Energy Management Strategy for TEG-powered Environmental Monitoring IoT Devices: A Pilot Study
Popis výsledku v původním jazyce
In this pilot study, we describe self-learning energy management principles for energy harvesting environmental monitoring nodes using Internet of Things (IoT) communications technology. The solution is powered with ambient energy harvested by a thermoelectric generator (TEG) and stored in an internal supercapacitor. We present a hardware-based model derived from a DC/DC converter, microcontroller and LoRaWAN IoT interface, which is detailed in the paper. The simulation applied historical temperature data obtained at several soil depths. The study's contribution is a reinforcement learning (Q-learning) method to achieve an optimal energy management strategy to maximize data collection and minimize failure. The results demonstrate that the designed approach was capable of operating more effectively (up to approx. 96 % ratio between complete and missed cycles) than reference solutions with a fixed duty-cycle configuration. We support our conclusions with results from 10 candidate Q-learning controllers which apply various learning and discount factor configurations and demonstrate superior complete/missed cycles ratios than the reference solutions. (C) 2022 IEEE.
Název v anglickém jazyce
Q-learning Energy Management Strategy for TEG-powered Environmental Monitoring IoT Devices: A Pilot Study
Popis výsledku anglicky
In this pilot study, we describe self-learning energy management principles for energy harvesting environmental monitoring nodes using Internet of Things (IoT) communications technology. The solution is powered with ambient energy harvested by a thermoelectric generator (TEG) and stored in an internal supercapacitor. We present a hardware-based model derived from a DC/DC converter, microcontroller and LoRaWAN IoT interface, which is detailed in the paper. The simulation applied historical temperature data obtained at several soil depths. The study's contribution is a reinforcement learning (Q-learning) method to achieve an optimal energy management strategy to maximize data collection and minimize failure. The results demonstrate that the designed approach was capable of operating more effectively (up to approx. 96 % ratio between complete and missed cycles) than reference solutions with a fixed duty-cycle configuration. We support our conclusions with results from 10 candidate Q-learning controllers which apply various learning and discount factor configurations and demonstrate superior complete/missed cycles ratios than the reference solutions. (C) 2022 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 IEEE Symposium Series on Computational Intelligence, SSCI 2022 : proceedings : 4-7 december 2022, Singapore
ISBN
978-1-66548-769-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
211-216
Název nakladatele
IEEE - Institute of Electrical and Electronics Engineers
Místo vydání
Piscataway
Místo konání akce
Singapur
Datum konání akce
4. 12. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—