Novel Random Key Encoding Schemes for the Differential Evolution of Permutation Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10249025" target="_blank" >RIV/61989100:27240/22:10249025 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9449662" target="_blank" >https://ieeexplore.ieee.org/document/9449662</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TEVC.2021.3087802" target="_blank" >10.1109/TEVC.2021.3087802</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Novel Random Key Encoding Schemes for the Differential Evolution of Permutation Problems
Popis výsledku v původním jazyce
Differential evolution is a powerful nature-inspired real-parameter optimization algorithm that has been successfully used to solve a number of hard optimization problems. It has been used to tackle both continuous and discrete optimization problems. The application of a continuous method to discrete problems involves several challenges, including solution representation and search space-solution space mapping. In this work, we study random key encoding, a popular encoding scheme that is used to represent permutations in high-dimensional continuous spaces. We analyze the search space it constitutes, study its structure and properties, and introduce two novel modifications of the encoding. We investigate the proposed encoding strategies in the context of four variants of the differential evolution algorithm and demonstrate their usefulness for two widespread permutation problems: 1) the linear ordering problem and 2) the traveling salesman problem.
Název v anglickém jazyce
Novel Random Key Encoding Schemes for the Differential Evolution of Permutation Problems
Popis výsledku anglicky
Differential evolution is a powerful nature-inspired real-parameter optimization algorithm that has been successfully used to solve a number of hard optimization problems. It has been used to tackle both continuous and discrete optimization problems. The application of a continuous method to discrete problems involves several challenges, including solution representation and search space-solution space mapping. In this work, we study random key encoding, a popular encoding scheme that is used to represent permutations in high-dimensional continuous spaces. We analyze the search space it constitutes, study its structure and properties, and introduce two novel modifications of the encoding. We investigate the proposed encoding strategies in the context of four variants of the differential evolution algorithm and demonstrate their usefulness for two widespread permutation problems: 1) the linear ordering problem and 2) the traveling salesman problem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAIN19176" target="_blank" >LTAIN19176: Metaheuristický rámec pro vícecílové kombinatorické optimalizační problémy (META MO-COP)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Evolutionary Computation
ISSN
1089-778X
e-ISSN
1941-0026
Svazek periodika
26
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
43-57
Kód UT WoS článku
000748370700008
EID výsledku v databázi Scopus
—