Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Subgraph mining in a large graph: A review

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10249920" target="_blank" >RIV/61989100:27240/22:10249920 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/22:10249920

  • Výsledek na webu

    <a href="https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1454?casa_token=dPl7lX0ptm0AAAAA%3ANj0aa5N4eL1DtmOACnI_MNgIb3vgcbuV8dAJhaWZUkR5Gii5sPF7ah9AFCdIUijJx2-d4zyFqZlWCrM" target="_blank" >https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1454?casa_token=dPl7lX0ptm0AAAAA%3ANj0aa5N4eL1DtmOACnI_MNgIb3vgcbuV8dAJhaWZUkR5Gii5sPF7ah9AFCdIUijJx2-d4zyFqZlWCrM</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/widm.1454" target="_blank" >10.1002/widm.1454</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Subgraph mining in a large graph: A review

  • Popis výsledku v původním jazyce

    Large graphs are often used to simulate and model complex systems in various research and application fields. Because of its importance, frequent subgraph mining (FSM) in single large graphs is a vital issue, and recently, it has attracted numerous researchers, and played an important role in various tasks for both research and application purposes. FSM is aimed at finding all subgraphs whose number of appearances in a large graph is greater than or equal to a given frequency threshold. In most recent applications, the underlying graphs are very large, such as social networks, and therefore algorithms for FSM from a single large graph have been rapidly developed, but all of them have NP-hard (nondeterministic polynomial time) complexity with huge search spaces, and therefore still need a lot of time and memory to restore and process. In this article, we present an overview of problems of FSM, important phases in FSM, main groups of FSM, as well as surveying many modern applied algorithms. This includes many practical applications and is a fundamental premise for many studies in the future. This article is categorized under: Algorithmic Development &gt; Association Rules Algorithmic Development &gt; Structure Discovery

  • Název v anglickém jazyce

    Subgraph mining in a large graph: A review

  • Popis výsledku anglicky

    Large graphs are often used to simulate and model complex systems in various research and application fields. Because of its importance, frequent subgraph mining (FSM) in single large graphs is a vital issue, and recently, it has attracted numerous researchers, and played an important role in various tasks for both research and application purposes. FSM is aimed at finding all subgraphs whose number of appearances in a large graph is greater than or equal to a given frequency threshold. In most recent applications, the underlying graphs are very large, such as social networks, and therefore algorithms for FSM from a single large graph have been rapidly developed, but all of them have NP-hard (nondeterministic polynomial time) complexity with huge search spaces, and therefore still need a lot of time and memory to restore and process. In this article, we present an overview of problems of FSM, important phases in FSM, main groups of FSM, as well as surveying many modern applied algorithms. This includes many practical applications and is a fundamental premise for many studies in the future. This article is categorized under: Algorithmic Development &gt; Association Rules Algorithmic Development &gt; Structure Discovery

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery

  • ISSN

    1942-4787

  • e-ISSN

    1942-4795

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    24

  • Strana od-do

  • Kód UT WoS článku

    000765699100001

  • EID výsledku v databázi Scopus