Subgraph mining in a large graph: A review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10249920" target="_blank" >RIV/61989100:27240/22:10249920 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/22:10249920
Výsledek na webu
<a href="https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1454?casa_token=dPl7lX0ptm0AAAAA%3ANj0aa5N4eL1DtmOACnI_MNgIb3vgcbuV8dAJhaWZUkR5Gii5sPF7ah9AFCdIUijJx2-d4zyFqZlWCrM" target="_blank" >https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1454?casa_token=dPl7lX0ptm0AAAAA%3ANj0aa5N4eL1DtmOACnI_MNgIb3vgcbuV8dAJhaWZUkR5Gii5sPF7ah9AFCdIUijJx2-d4zyFqZlWCrM</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/widm.1454" target="_blank" >10.1002/widm.1454</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Subgraph mining in a large graph: A review
Popis výsledku v původním jazyce
Large graphs are often used to simulate and model complex systems in various research and application fields. Because of its importance, frequent subgraph mining (FSM) in single large graphs is a vital issue, and recently, it has attracted numerous researchers, and played an important role in various tasks for both research and application purposes. FSM is aimed at finding all subgraphs whose number of appearances in a large graph is greater than or equal to a given frequency threshold. In most recent applications, the underlying graphs are very large, such as social networks, and therefore algorithms for FSM from a single large graph have been rapidly developed, but all of them have NP-hard (nondeterministic polynomial time) complexity with huge search spaces, and therefore still need a lot of time and memory to restore and process. In this article, we present an overview of problems of FSM, important phases in FSM, main groups of FSM, as well as surveying many modern applied algorithms. This includes many practical applications and is a fundamental premise for many studies in the future. This article is categorized under: Algorithmic Development > Association Rules Algorithmic Development > Structure Discovery
Název v anglickém jazyce
Subgraph mining in a large graph: A review
Popis výsledku anglicky
Large graphs are often used to simulate and model complex systems in various research and application fields. Because of its importance, frequent subgraph mining (FSM) in single large graphs is a vital issue, and recently, it has attracted numerous researchers, and played an important role in various tasks for both research and application purposes. FSM is aimed at finding all subgraphs whose number of appearances in a large graph is greater than or equal to a given frequency threshold. In most recent applications, the underlying graphs are very large, such as social networks, and therefore algorithms for FSM from a single large graph have been rapidly developed, but all of them have NP-hard (nondeterministic polynomial time) complexity with huge search spaces, and therefore still need a lot of time and memory to restore and process. In this article, we present an overview of problems of FSM, important phases in FSM, main groups of FSM, as well as surveying many modern applied algorithms. This includes many practical applications and is a fundamental premise for many studies in the future. This article is categorized under: Algorithmic Development > Association Rules Algorithmic Development > Structure Discovery
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
ISSN
1942-4787
e-ISSN
1942-4795
Svazek periodika
12
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
—
Kód UT WoS článku
000765699100001
EID výsledku v databázi Scopus
—