An efficient and scalable approach for mining subgraphs in a single large graph
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F22%3A10249926" target="_blank" >RIV/61989100:27740/22:10249926 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/22:10249926
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10489-022-03164-5" target="_blank" >https://link.springer.com/article/10.1007/s10489-022-03164-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10489-022-03164-5" target="_blank" >10.1007/s10489-022-03164-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An efficient and scalable approach for mining subgraphs in a single large graph
Popis výsledku v původním jazyce
In many recent applications, a graph is used to simulate many complex systems, such as social networks, traffic models or bioinformatics, and the underlying graphs for these systems are very large. Algorithms for mining all frequent subgraphs from a single large graph have attracted much attention and been studied in more detail lately. Mining frequent subgraphs is important, and defined as finding all subgraphs whose occurrences in a dataset are greater than or equal to a given frequency threshold. Among frequent subgraph algorithms, GraMi is considered as the state-of-the-art approach. However, GraMi has a huge search space, and therefore still needs a lot of time and memory to process a large graph. In this paper, we propose two effective strategies to balance and reduce the search space of GraMi, which can decrease the number of candidate subgraphs generated, with early pruning of a large portion of the domain for each candidate. Our experiments were performed on four real datasets and the results show that the performance of our balancing GraMi is better than those of the original algorithm GraMi and the optimized version SoGraMi.
Název v anglickém jazyce
An efficient and scalable approach for mining subgraphs in a single large graph
Popis výsledku anglicky
In many recent applications, a graph is used to simulate many complex systems, such as social networks, traffic models or bioinformatics, and the underlying graphs for these systems are very large. Algorithms for mining all frequent subgraphs from a single large graph have attracted much attention and been studied in more detail lately. Mining frequent subgraphs is important, and defined as finding all subgraphs whose occurrences in a dataset are greater than or equal to a given frequency threshold. Among frequent subgraph algorithms, GraMi is considered as the state-of-the-art approach. However, GraMi has a huge search space, and therefore still needs a lot of time and memory to process a large graph. In this paper, we propose two effective strategies to balance and reduce the search space of GraMi, which can decrease the number of candidate subgraphs generated, with early pruning of a large portion of the domain for each candidate. Our experiments were performed on four real datasets and the results show that the performance of our balancing GraMi is better than those of the original algorithm GraMi and the optimized version SoGraMi.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Intelligence
ISSN
0924-669X
e-ISSN
1573-7497
Svazek periodika
52
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
nestrankovano
Kód UT WoS článku
000778916300004
EID výsledku v databázi Scopus
—