Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An efficient and scalable approach for mining subgraphs in a single large graph

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F22%3A10249926" target="_blank" >RIV/61989100:27740/22:10249926 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27240/22:10249926

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10489-022-03164-5" target="_blank" >https://link.springer.com/article/10.1007/s10489-022-03164-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10489-022-03164-5" target="_blank" >10.1007/s10489-022-03164-5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An efficient and scalable approach for mining subgraphs in a single large graph

  • Popis výsledku v původním jazyce

    In many recent applications, a graph is used to simulate many complex systems, such as social networks, traffic models or bioinformatics, and the underlying graphs for these systems are very large. Algorithms for mining all frequent subgraphs from a single large graph have attracted much attention and been studied in more detail lately. Mining frequent subgraphs is important, and defined as finding all subgraphs whose occurrences in a dataset are greater than or equal to a given frequency threshold. Among frequent subgraph algorithms, GraMi is considered as the state-of-the-art approach. However, GraMi has a huge search space, and therefore still needs a lot of time and memory to process a large graph. In this paper, we propose two effective strategies to balance and reduce the search space of GraMi, which can decrease the number of candidate subgraphs generated, with early pruning of a large portion of the domain for each candidate. Our experiments were performed on four real datasets and the results show that the performance of our balancing GraMi is better than those of the original algorithm GraMi and the optimized version SoGraMi.

  • Název v anglickém jazyce

    An efficient and scalable approach for mining subgraphs in a single large graph

  • Popis výsledku anglicky

    In many recent applications, a graph is used to simulate many complex systems, such as social networks, traffic models or bioinformatics, and the underlying graphs for these systems are very large. Algorithms for mining all frequent subgraphs from a single large graph have attracted much attention and been studied in more detail lately. Mining frequent subgraphs is important, and defined as finding all subgraphs whose occurrences in a dataset are greater than or equal to a given frequency threshold. Among frequent subgraph algorithms, GraMi is considered as the state-of-the-art approach. However, GraMi has a huge search space, and therefore still needs a lot of time and memory to process a large graph. In this paper, we propose two effective strategies to balance and reduce the search space of GraMi, which can decrease the number of candidate subgraphs generated, with early pruning of a large portion of the domain for each candidate. Our experiments were performed on four real datasets and the results show that the performance of our balancing GraMi is better than those of the original algorithm GraMi and the optimized version SoGraMi.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Intelligence

  • ISSN

    0924-669X

  • e-ISSN

    1573-7497

  • Svazek periodika

    52

  • Číslo periodika v rámci svazku

    15

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000778916300004

  • EID výsledku v databázi Scopus