Multi-Modal Rigid Image Registration and Segmentation Using Multi-Stage Forward Path Regenerative Genetic Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10250188" target="_blank" >RIV/61989100:27240/22:10250188 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-8994/14/8/1506" target="_blank" >https://www.mdpi.com/2073-8994/14/8/1506</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym14081506" target="_blank" >10.3390/sym14081506</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Modal Rigid Image Registration and Segmentation Using Multi-Stage Forward Path Regenerative Genetic Algorithm
Popis výsledku v původním jazyce
Medical image diagnosis and delineation of lesions in the human brain require information to combine from different imaging sensors. Image registration is considered to be an essential pre-processing technique of aligning images of different modalities. The brain is a naturally bilateral symmetrical organ, where the left half lobe resembles the right half lobe around the symmetrical axis. The identified symmetry axis in one MRI image can identify symmetry axes in multi-modal registered MRI images instantly. MRI sensors may induce different levels of noise and Intensity Non-Uniformity (INU) in images. These image degradations may cause difficulty in finding true transformation parameters for an optimization technique. We will be investigating the new variant of evolution strategy of genetic algorithm as an optimization technique that performs well even for the high level of noise and INU, compared to Nesterov, Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (LBFGS), Simulated Annealing (SA), and Single-Stage Genetic Algorithm (SSGA). The proposed new multi-modal image registration technique based on a genetic algorithm with increasing precision levels and decreasing search spaces in successive stages is called the Multi-Stage Forward Path Regenerative Genetic Algorithm (MFRGA). Our proposed algorithm is better in terms of overall registration error as compared to the standard genetic algorithm. MFRGA results in a mean registration error of 0.492 in case of the same level of noise (1-9)% and INU (0-40)% in both reference and template image, and 0.317 in case of a noise-free template and reference with noise levels (1-9)% and INU (0-40)%. Accurate registration results in good segmentation, and we apply registration transformations to segment normal brain structures for evaluating registration accuracy. The brain segmentation via registration with our proposed algorithm is better even in cases of high levels of noise and INU as compared to GA and LBFGS. The mean dice similarity coefficient of brain structures CSF, GM, and WM is 0.701, 0.792, and 0.913, respectively.
Název v anglickém jazyce
Multi-Modal Rigid Image Registration and Segmentation Using Multi-Stage Forward Path Regenerative Genetic Algorithm
Popis výsledku anglicky
Medical image diagnosis and delineation of lesions in the human brain require information to combine from different imaging sensors. Image registration is considered to be an essential pre-processing technique of aligning images of different modalities. The brain is a naturally bilateral symmetrical organ, where the left half lobe resembles the right half lobe around the symmetrical axis. The identified symmetry axis in one MRI image can identify symmetry axes in multi-modal registered MRI images instantly. MRI sensors may induce different levels of noise and Intensity Non-Uniformity (INU) in images. These image degradations may cause difficulty in finding true transformation parameters for an optimization technique. We will be investigating the new variant of evolution strategy of genetic algorithm as an optimization technique that performs well even for the high level of noise and INU, compared to Nesterov, Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (LBFGS), Simulated Annealing (SA), and Single-Stage Genetic Algorithm (SSGA). The proposed new multi-modal image registration technique based on a genetic algorithm with increasing precision levels and decreasing search spaces in successive stages is called the Multi-Stage Forward Path Regenerative Genetic Algorithm (MFRGA). Our proposed algorithm is better in terms of overall registration error as compared to the standard genetic algorithm. MFRGA results in a mean registration error of 0.492 in case of the same level of noise (1-9)% and INU (0-40)% in both reference and template image, and 0.317 in case of a noise-free template and reference with noise levels (1-9)% and INU (0-40)%. Accurate registration results in good segmentation, and we apply registration transformations to segment normal brain structures for evaluating registration accuracy. The brain segmentation via registration with our proposed algorithm is better even in cases of high levels of noise and INU as compared to GA and LBFGS. The mean dice similarity coefficient of brain structures CSF, GM, and WM is 0.701, 0.792, and 0.913, respectively.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry
ISSN
2073-8994
e-ISSN
2073-8994
Svazek periodika
14
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
nestrankovano
Kód UT WoS článku
000845250600001
EID výsledku v databázi Scopus
—