Automated Multi-Contrast Brain Pathological Area Extraction from 2D MR Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F15%3A00452295" target="_blank" >RIV/68081731:_____/15:00452295 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/S1665-6423(15)30005-5" target="_blank" >http://dx.doi.org/10.1016/S1665-6423(15)30005-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/S1665-6423(15)30005-5" target="_blank" >10.1016/S1665-6423(15)30005-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated Multi-Contrast Brain Pathological Area Extraction from 2D MR Images
Popis výsledku v původním jazyce
The aim of this work is to propose the fully automated pathological area extraction from multi-parametric 2D MR images of brain. The proposed method is based on multi-resolution symmetry analysis and automatic thresholding. The proposed algorithm first detects the presence of pathology and then starts its extraction. T2 images are used for the presence detection and the multi-contrast MRI is used for the extraction, concretely T2 and FLAIR images. The extraction is based on thresholding, where Otsu's algorithm is used for the automatic determination of the threshold. Since the method is based on symmetry, it works for both axial and coronal planes. In both these planes of healthy brain, the approximate left-right symmetry exists and it is used as the prior knowledge for searching the approximate pathology location. It is assumed that this area is not located symmetrically in both hemispheres, which is met in most cases. The detection algorithm was tested on 203 T2-weighted images and r
Název v anglickém jazyce
Automated Multi-Contrast Brain Pathological Area Extraction from 2D MR Images
Popis výsledku anglicky
The aim of this work is to propose the fully automated pathological area extraction from multi-parametric 2D MR images of brain. The proposed method is based on multi-resolution symmetry analysis and automatic thresholding. The proposed algorithm first detects the presence of pathology and then starts its extraction. T2 images are used for the presence detection and the multi-contrast MRI is used for the extraction, concretely T2 and FLAIR images. The extraction is based on thresholding, where Otsu's algorithm is used for the automatic determination of the threshold. Since the method is based on symmetry, it works for both axial and coronal planes. In both these planes of healthy brain, the approximate left-right symmetry exists and it is used as the prior knowledge for searching the approximate pathology location. It is assumed that this area is not located symmetrically in both hemispheres, which is met in most cases. The detection algorithm was tested on 203 T2-weighted images and r
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BH - Optika, masery a lasery
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP102%2F12%2F1104" target="_blank" >GAP102/12/1104: Studium metabolizmu a lokalizace primárního mozkového tumoru MR zobrazovacími technikami</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Research and Technology
ISSN
1665-6423
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
MX - Spojené státy mexické
Počet stran výsledku
12
Strana od-do
58-69
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—