Efficient Matching-Based Parallel Task Offloading in IoT Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10250409" target="_blank" >RIV/61989100:27240/22:10250409 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/s22186906" target="_blank" >https://doi.org/10.3390/s22186906</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s22186906" target="_blank" >10.3390/s22186906</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Matching-Based Parallel Task Offloading in IoT Networks
Popis výsledku v původním jazyce
Fog computing is one of the major components of future 6G networks. It can provide fast computing of different application-related tasks and improve system reliability due to better decision-making. Parallel offloading, in which a task is split into several sub-tasks and transmitted to different fog nodes for parallel computation, is a promising concept in task offloading. Parallel offloading suffers from challenges such as sub-task splitting and mapping of sub-tasks to the fog nodes. In this paper, we propose a novel many-to-one matching-based algorithm for the allocation of sub-tasks to fog nodes. We develop preference profiles for IoT nodes and fog nodes to reduce the task computation delay. We also propose a technique to address the externalities problem in the matching algorithm that is caused by the dynamic preference profiles. Furthermore, a detailed evaluation of the proposed technique is presented to show the benefits of each feature of the algorithm. Simulation results show that the proposed matching-based offloading technique outperforms other available techniques from the literature and improves task latency by 52% at high task loads.
Název v anglickém jazyce
Efficient Matching-Based Parallel Task Offloading in IoT Networks
Popis výsledku anglicky
Fog computing is one of the major components of future 6G networks. It can provide fast computing of different application-related tasks and improve system reliability due to better decision-making. Parallel offloading, in which a task is split into several sub-tasks and transmitted to different fog nodes for parallel computation, is a promising concept in task offloading. Parallel offloading suffers from challenges such as sub-task splitting and mapping of sub-tasks to the fog nodes. In this paper, we propose a novel many-to-one matching-based algorithm for the allocation of sub-tasks to fog nodes. We develop preference profiles for IoT nodes and fog nodes to reduce the task computation delay. We also propose a technique to address the externalities problem in the matching algorithm that is caused by the dynamic preference profiles. Furthermore, a detailed evaluation of the proposed technique is presented to show the benefits of each feature of the algorithm. Simulation results show that the proposed matching-based offloading technique outperforms other available techniques from the literature and improves task latency by 52% at high task loads.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors (Basel, Switzerland)
ISSN
1424-8220
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
22
Strana od-do
nestrankovano
Kód UT WoS článku
000859490100001
EID výsledku v databázi Scopus
2-s2.0-85138400462