Federated Learning for Edge Computing: A Survey
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10250685" target="_blank" >RIV/61989100:27240/22:10250685 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/12/18/9124" target="_blank" >https://www.mdpi.com/2076-3417/12/18/9124</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app12189124" target="_blank" >10.3390/app12189124</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Federated Learning for Edge Computing: A Survey
Popis výsledku v původním jazyce
New technologies bring opportunities to deploy AI and machine learning to the edge of the network, allowing edge devices to train simple models that can then be deployed in practice. Federated learning (FL) is a distributed machine learning technique to create a global model by learning from multiple decentralized edge clients. Although FL methods offer several advantages, including scalability and data privacy, they also introduce some risks and drawbacks in terms of computational complexity in the case of heterogeneous devices. Internet of Things (IoT) devices may have limited computing resources, poorer connection quality, or may use different operating systems. This paper provides an overview of the methods used in FL with a focus on edge devices with limited computational resources. This paper also presents FL frameworks that are currently popular and that provide communication between clients and servers. In this context, various topics are described, which include contributions and trends in the literature. This includes basic models and designs of system architecture, possibilities of application in practice, privacy and security, and resource management. Challenges related to the computational requirements of edge devices such as hardware heterogeneity, communication overload or limited resources of devices are discussed.
Název v anglickém jazyce
Federated Learning for Edge Computing: A Survey
Popis výsledku anglicky
New technologies bring opportunities to deploy AI and machine learning to the edge of the network, allowing edge devices to train simple models that can then be deployed in practice. Federated learning (FL) is a distributed machine learning technique to create a global model by learning from multiple decentralized edge clients. Although FL methods offer several advantages, including scalability and data privacy, they also introduce some risks and drawbacks in terms of computational complexity in the case of heterogeneous devices. Internet of Things (IoT) devices may have limited computing resources, poorer connection quality, or may use different operating systems. This paper provides an overview of the methods used in FL with a focus on edge devices with limited computational resources. This paper also presents FL frameworks that are currently popular and that provide communication between clients and servers. In this context, various topics are described, which include contributions and trends in the literature. This includes basic models and designs of system architecture, possibilities of application in practice, privacy and security, and resource management. Challenges related to the computational requirements of edge devices such as hardware heterogeneity, communication overload or limited resources of devices are discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences
ISSN
2076-3417
e-ISSN
2076-3417
Svazek periodika
12
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
36
Strana od-do
nestrankovano
Kód UT WoS článku
000858044200001
EID výsledku v databázi Scopus
—