Smart Classroom Monitoring Using Novel Real-Time Facial Expression Recognition System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10250906" target="_blank" >RIV/61989100:27240/22:10250906 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/12/23/12134" target="_blank" >https://www.mdpi.com/2076-3417/12/23/12134</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app122312134" target="_blank" >10.3390/app122312134</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Smart Classroom Monitoring Using Novel Real-Time Facial Expression Recognition System
Popis výsledku v původním jazyce
Featured Application: The proposed automatic emotion recognition system has been deployed in the classroom environment (education) but it can be used anywhere to monitor the emotions of humans, i.e., health, banking, industries, social welfare etc. Emotions play a vital role in education. Technological advancement in computer vision using deep learning models has improved automatic emotion recognition. In this study, a real-time automatic emotion recognition system is developed incorporating novel salient facial features for classroom assessment using a deep learning model. The proposed novel facial features for each emotion are initially detected using HOG for face recognition, and automatic emotion recognition is then performed by training a convolutional neural network (CNN) that takes real-time input from a camera deployed in the classroom. The proposed emotion recognition system will analyze the facial expressions of each student during learning. The selected emotional states are happiness, sadness, and fear along with the cognitive-emotional states of satisfaction, dissatisfaction, and concentration. The selected emotional states are tested against selected variables gender, department, lecture time, seating positions, and the difficulty of a subject. The proposed system contributes to improve classroom learning.
Název v anglickém jazyce
Smart Classroom Monitoring Using Novel Real-Time Facial Expression Recognition System
Popis výsledku anglicky
Featured Application: The proposed automatic emotion recognition system has been deployed in the classroom environment (education) but it can be used anywhere to monitor the emotions of humans, i.e., health, banking, industries, social welfare etc. Emotions play a vital role in education. Technological advancement in computer vision using deep learning models has improved automatic emotion recognition. In this study, a real-time automatic emotion recognition system is developed incorporating novel salient facial features for classroom assessment using a deep learning model. The proposed novel facial features for each emotion are initially detected using HOG for face recognition, and automatic emotion recognition is then performed by training a convolutional neural network (CNN) that takes real-time input from a camera deployed in the classroom. The proposed emotion recognition system will analyze the facial expressions of each student during learning. The selected emotional states are happiness, sadness, and fear along with the cognitive-emotional states of satisfaction, dissatisfaction, and concentration. The selected emotional states are tested against selected variables gender, department, lecture time, seating positions, and the difficulty of a subject. The proposed system contributes to improve classroom learning.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences
ISSN
2076-3417
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
000895151600001
EID výsledku v databázi Scopus
2-s2.0-85143724769