Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Smart Classroom Monitoring Using Novel Real-Time Facial Expression Recognition System

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10250906" target="_blank" >RIV/61989100:27240/22:10250906 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2076-3417/12/23/12134" target="_blank" >https://www.mdpi.com/2076-3417/12/23/12134</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app122312134" target="_blank" >10.3390/app122312134</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Smart Classroom Monitoring Using Novel Real-Time Facial Expression Recognition System

  • Popis výsledku v původním jazyce

    Featured Application: The proposed automatic emotion recognition system has been deployed in the classroom environment (education) but it can be used anywhere to monitor the emotions of humans, i.e., health, banking, industries, social welfare etc. Emotions play a vital role in education. Technological advancement in computer vision using deep learning models has improved automatic emotion recognition. In this study, a real-time automatic emotion recognition system is developed incorporating novel salient facial features for classroom assessment using a deep learning model. The proposed novel facial features for each emotion are initially detected using HOG for face recognition, and automatic emotion recognition is then performed by training a convolutional neural network (CNN) that takes real-time input from a camera deployed in the classroom. The proposed emotion recognition system will analyze the facial expressions of each student during learning. The selected emotional states are happiness, sadness, and fear along with the cognitive-emotional states of satisfaction, dissatisfaction, and concentration. The selected emotional states are tested against selected variables gender, department, lecture time, seating positions, and the difficulty of a subject. The proposed system contributes to improve classroom learning.

  • Název v anglickém jazyce

    Smart Classroom Monitoring Using Novel Real-Time Facial Expression Recognition System

  • Popis výsledku anglicky

    Featured Application: The proposed automatic emotion recognition system has been deployed in the classroom environment (education) but it can be used anywhere to monitor the emotions of humans, i.e., health, banking, industries, social welfare etc. Emotions play a vital role in education. Technological advancement in computer vision using deep learning models has improved automatic emotion recognition. In this study, a real-time automatic emotion recognition system is developed incorporating novel salient facial features for classroom assessment using a deep learning model. The proposed novel facial features for each emotion are initially detected using HOG for face recognition, and automatic emotion recognition is then performed by training a convolutional neural network (CNN) that takes real-time input from a camera deployed in the classroom. The proposed emotion recognition system will analyze the facial expressions of each student during learning. The selected emotional states are happiness, sadness, and fear along with the cognitive-emotional states of satisfaction, dissatisfaction, and concentration. The selected emotional states are tested against selected variables gender, department, lecture time, seating positions, and the difficulty of a subject. The proposed system contributes to improve classroom learning.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Sciences

  • ISSN

    2076-3417

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    23

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    18

  • Strana od-do

    1-18

  • Kód UT WoS článku

    000895151600001

  • EID výsledku v databázi Scopus

    2-s2.0-85143724769