Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Applications of machine learning in thermochemical conversion of biomass-A review

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251263" target="_blank" >RIV/61989100:27240/22:10251263 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://reader.elsevier.com/reader/sd/pii/S0016236122028794?token=3135C92C9F6941DDA7692476520A950C63C22723B6D3F7B0A398B11293DAC28DC7F89A97F4B898C85710BF87D4210C42&originRegion=eu-west-1&originCreation=20230206090009" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0016236122028794?token=3135C92C9F6941DDA7692476520A950C63C22723B6D3F7B0A398B11293DAC28DC7F89A97F4B898C85710BF87D4210C42&originRegion=eu-west-1&originCreation=20230206090009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fuel.2022.126055" target="_blank" >10.1016/j.fuel.2022.126055</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Applications of machine learning in thermochemical conversion of biomass-A review

  • Popis výsledku v původním jazyce

    Thermochemical conversion of biomass has been considered a promising technique to produce alternative renewable fuel sources for future energy supply. However, these processes are often complex, labor-intensive, and time-consuming. Significant efforts have been made in developing strategies for modeling thermochem-ical conversion processes to maximize their performance and productivity. Among these strategies, machine learning (ML) has attracted substantial interest in recent years in thermochemical conversion process optimi-zation, yield prediction, real-time monitoring, and process control. This study presents a comprehensive review of the research and development in state-of-the-art ML applications in pyrolysis, torrefaction, hydrothermal treatment, gasification, and combustion. Artificial neural networks have been widely employed due to their ability to learn extremely non-linear input-output correlations. Furthermore, the hybrid ML models out-performed the traditional ML models in modeling and optimization tasks. The comparison between various ML methods for different applications, and insights about where the current research is heading, is highlighted. Finally, based on the critical analysis, existing research knowledge gaps are identified, and future recommen-dations are presented.

  • Název v anglickém jazyce

    Applications of machine learning in thermochemical conversion of biomass-A review

  • Popis výsledku anglicky

    Thermochemical conversion of biomass has been considered a promising technique to produce alternative renewable fuel sources for future energy supply. However, these processes are often complex, labor-intensive, and time-consuming. Significant efforts have been made in developing strategies for modeling thermochem-ical conversion processes to maximize their performance and productivity. Among these strategies, machine learning (ML) has attracted substantial interest in recent years in thermochemical conversion process optimi-zation, yield prediction, real-time monitoring, and process control. This study presents a comprehensive review of the research and development in state-of-the-art ML applications in pyrolysis, torrefaction, hydrothermal treatment, gasification, and combustion. Artificial neural networks have been widely employed due to their ability to learn extremely non-linear input-output correlations. Furthermore, the hybrid ML models out-performed the traditional ML models in modeling and optimization tasks. The comparison between various ML methods for different applications, and insights about where the current research is heading, is highlighted. Finally, based on the critical analysis, existing research knowledge gaps are identified, and future recommen-dations are presented.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTI19002" target="_blank" >LTI19002: Zapojení českých výzkumných organizací do Evropské aliance pro energetický výzkum EERA (EERA-CZ 2)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Fuel

  • ISSN

    0016-2361

  • e-ISSN

    1873-7153

  • Svazek periodika

    332

  • Číslo periodika v rámci svazku

    2022

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000870315200002

  • EID výsledku v databázi Scopus