Applications of machine learning in thermochemical conversion of biomass-A review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251263" target="_blank" >RIV/61989100:27240/22:10251263 - isvavai.cz</a>
Výsledek na webu
<a href="https://reader.elsevier.com/reader/sd/pii/S0016236122028794?token=3135C92C9F6941DDA7692476520A950C63C22723B6D3F7B0A398B11293DAC28DC7F89A97F4B898C85710BF87D4210C42&originRegion=eu-west-1&originCreation=20230206090009" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0016236122028794?token=3135C92C9F6941DDA7692476520A950C63C22723B6D3F7B0A398B11293DAC28DC7F89A97F4B898C85710BF87D4210C42&originRegion=eu-west-1&originCreation=20230206090009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fuel.2022.126055" target="_blank" >10.1016/j.fuel.2022.126055</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Applications of machine learning in thermochemical conversion of biomass-A review
Popis výsledku v původním jazyce
Thermochemical conversion of biomass has been considered a promising technique to produce alternative renewable fuel sources for future energy supply. However, these processes are often complex, labor-intensive, and time-consuming. Significant efforts have been made in developing strategies for modeling thermochem-ical conversion processes to maximize their performance and productivity. Among these strategies, machine learning (ML) has attracted substantial interest in recent years in thermochemical conversion process optimi-zation, yield prediction, real-time monitoring, and process control. This study presents a comprehensive review of the research and development in state-of-the-art ML applications in pyrolysis, torrefaction, hydrothermal treatment, gasification, and combustion. Artificial neural networks have been widely employed due to their ability to learn extremely non-linear input-output correlations. Furthermore, the hybrid ML models out-performed the traditional ML models in modeling and optimization tasks. The comparison between various ML methods for different applications, and insights about where the current research is heading, is highlighted. Finally, based on the critical analysis, existing research knowledge gaps are identified, and future recommen-dations are presented.
Název v anglickém jazyce
Applications of machine learning in thermochemical conversion of biomass-A review
Popis výsledku anglicky
Thermochemical conversion of biomass has been considered a promising technique to produce alternative renewable fuel sources for future energy supply. However, these processes are often complex, labor-intensive, and time-consuming. Significant efforts have been made in developing strategies for modeling thermochem-ical conversion processes to maximize their performance and productivity. Among these strategies, machine learning (ML) has attracted substantial interest in recent years in thermochemical conversion process optimi-zation, yield prediction, real-time monitoring, and process control. This study presents a comprehensive review of the research and development in state-of-the-art ML applications in pyrolysis, torrefaction, hydrothermal treatment, gasification, and combustion. Artificial neural networks have been widely employed due to their ability to learn extremely non-linear input-output correlations. Furthermore, the hybrid ML models out-performed the traditional ML models in modeling and optimization tasks. The comparison between various ML methods for different applications, and insights about where the current research is heading, is highlighted. Finally, based on the critical analysis, existing research knowledge gaps are identified, and future recommen-dations are presented.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LTI19002" target="_blank" >LTI19002: Zapojení českých výzkumných organizací do Evropské aliance pro energetický výzkum EERA (EERA-CZ 2)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fuel
ISSN
0016-2361
e-ISSN
1873-7153
Svazek periodika
332
Číslo periodika v rámci svazku
2022
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
nestrankovano
Kód UT WoS článku
000870315200002
EID výsledku v databázi Scopus
—