Gannet optimization algorithm : A new metaheuristic algorithm for solving engineering optimization problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251901" target="_blank" >RIV/61989100:27240/22:10251901 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0378475422002774?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0378475422002774?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matcom.2022.06.007" target="_blank" >10.1016/j.matcom.2022.06.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gannet optimization algorithm : A new metaheuristic algorithm for solving engineering optimization problems
Popis výsledku v původním jazyce
Engineering design problems are usually large-scale constrained optimization problems, and metaheuristic algorithms are vital for solving such complex problems. Therefore, this paper introduces a new nature-inspired metaheuristic algorithm: the gannet optimization algorithm (GOA). The GOA mathematizes the various unique behaviors of gannets during foraging and is used to enable exploration and exploitation. GOA's U-shaped and V-shaped diving patterns are responsible for exploring the optimal region within the search space, with sudden turns and random walks ensuring better solutions are found in this region. In order to verify the ability of the GOA to find the optimal solution, we compared it with other comparison algorithms in multiple dimensions of 28 benchmark functions. We found that the GOA has a shorter running time in high dimensions and can provide a better solution. Finally, we apply the GOA to five engineering optimization problems. The experimental results show that the GOA is suitable for many constrained engineering design problems and can provide better solutions in most cases.(c) 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Gannet optimization algorithm : A new metaheuristic algorithm for solving engineering optimization problems
Popis výsledku anglicky
Engineering design problems are usually large-scale constrained optimization problems, and metaheuristic algorithms are vital for solving such complex problems. Therefore, this paper introduces a new nature-inspired metaheuristic algorithm: the gannet optimization algorithm (GOA). The GOA mathematizes the various unique behaviors of gannets during foraging and is used to enable exploration and exploitation. GOA's U-shaped and V-shaped diving patterns are responsible for exploring the optimal region within the search space, with sudden turns and random walks ensuring better solutions are found in this region. In order to verify the ability of the GOA to find the optimal solution, we compared it with other comparison algorithms in multiple dimensions of 28 benchmark functions. We found that the GOA has a shorter running time in high dimensions and can provide a better solution. Finally, we apply the GOA to five engineering optimization problems. The experimental results show that the GOA is suitable for many constrained engineering design problems and can provide better solutions in most cases.(c) 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics and computers in simulation
ISSN
0378-4754
e-ISSN
1872-7166
Svazek periodika
202
Číslo periodika v rámci svazku
prosinec 2022
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
31
Strana od-do
343-373
Kód UT WoS článku
000822807100002
EID výsledku v databázi Scopus
—