Fennec Fox Optimization: A New Nature-Inspired Optimization Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019363" target="_blank" >RIV/62690094:18470/22:50019363 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9853509/" target="_blank" >https://ieeexplore.ieee.org/document/9853509/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2022.3197745" target="_blank" >10.1109/ACCESS.2022.3197745</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fennec Fox Optimization: A New Nature-Inspired Optimization Algorithm
Popis výsledku v původním jazyce
This paper proposes a new nature-based metaheuristic algorithm called Fennec Fox Optimization (FFA), mimicking two natural behaviors of the animal Fennec Fox in nature. Concretely, Fennec’s digging ability and escape strategy from wild predators were the fundamental inspiration for the proposed FFA. The mathematical model of FFA is presented in two phases based on imitating these two behaviors. First, the efficiency of FFA was evaluated in the optimization of sixty-eight standard benchmark functions and four engineering design problems. Second, FFA performance is challenged against eight well-known optimization algorithms. The optimization results show that FFA perfectly balances exploration and exploitation in searching for the global optimum. Hence, FFA can provide suitable solutions to optimization problems. The comparison of results indicates the superiority of FFA in most objective functions over competitor algorithms in providing the optimal solution.
Název v anglickém jazyce
Fennec Fox Optimization: A New Nature-Inspired Optimization Algorithm
Popis výsledku anglicky
This paper proposes a new nature-based metaheuristic algorithm called Fennec Fox Optimization (FFA), mimicking two natural behaviors of the animal Fennec Fox in nature. Concretely, Fennec’s digging ability and escape strategy from wild predators were the fundamental inspiration for the proposed FFA. The mathematical model of FFA is presented in two phases based on imitating these two behaviors. First, the efficiency of FFA was evaluated in the optimization of sixty-eight standard benchmark functions and four engineering design problems. Second, FFA performance is challenged against eight well-known optimization algorithms. The optimization results show that FFA perfectly balances exploration and exploitation in searching for the global optimum. Hence, FFA can provide suitable solutions to optimization problems. The comparison of results indicates the superiority of FFA in most objective functions over competitor algorithms in providing the optimal solution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
10
Číslo periodika v rámci svazku
srpen
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
84417-84443
Kód UT WoS článku
000843554500001
EID výsledku v databázi Scopus
2-s2.0-85136144062